Quantification of the effects of salt stress and physiological state on thermotolerance of Bacillus cereus ATCC 10987 and ATCC 14579

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Den Besten, HMW en
dc.contributor.author Mataragas, M en
dc.contributor.author Moezelaar, R en
dc.contributor.author Abee, T en
dc.contributor.author Zwietering, MH en
dc.date.accessioned 2014-06-06T06:47:12Z
dc.date.available 2014-06-06T06:47:12Z
dc.date.issued 2006 en
dc.identifier.issn 00992240 en
dc.identifier.uri http://dx.doi.org/10.1128/AEM.00780-06 en
dc.subject.other Cells en
dc.subject.other Heat resistance en
dc.subject.other Physiology en
dc.subject.other Biphasic models en
dc.subject.other Microbial survival models en
dc.subject.other Salt stress conditions en
dc.subject.other Thermotolerance en
dc.subject.other Bacteria en
dc.subject.other sodium chloride en
dc.subject.other bacterium en
dc.subject.other numerical model en
dc.subject.other pathogen en
dc.subject.other physiological response en
dc.subject.other salinity tolerance en
dc.subject.other sodium chloride en
dc.subject.other survival en
dc.subject.other temperature tolerance en
dc.subject.other adaptive behavior en
dc.subject.other article en
dc.subject.other Bacillus cereus en
dc.subject.other bacterial spore en
dc.subject.other bacterial strain en
dc.subject.other bacterial survival en
dc.subject.other bacterium culture en
dc.subject.other controlled study en
dc.subject.other heat tolerance en
dc.subject.other nonhuman en
dc.subject.other physiological stress en
dc.subject.other quantitative analysis en
dc.subject.other salt stress en
dc.subject.other statistical model en
dc.subject.other Bacillus cereus en
dc.subject.other Food Microbiology en
dc.subject.other Linear Models en
dc.subject.other Models, Biological en
dc.subject.other Nonlinear Dynamics en
dc.subject.other Sodium Chloride en
dc.subject.other Species Specificity en
dc.subject.other Spores, Bacterial en
dc.subject.other Temperature en
dc.subject.other Bacillus cereus en
dc.subject.other Bacillus cereus ATCC 10987 en
dc.title Quantification of the effects of salt stress and physiological state on thermotolerance of Bacillus cereus ATCC 10987 and ATCC 14579 en
heal.type journalArticle en
heal.identifier.primary 10.1128/AEM.00780-06 en
heal.publicationDate 2006 en
heal.abstract The food-borne pathogen Bacillus cereus can acquire enhanced thermal resistance through multiple mechanisms. Two Bacillus cereus strains, ATCC 10987 and ATCC 14579, were used to quantify the effects of salt stress and physiological state on thermotolerance. Cultures were exposed to increasing concentrations of sodium chloride for 30 min, after which their thermotolerance was assessed at 50°C. Linear and nonlinear microbial survival models, which cover a wide range of known inactivation curvatures for vegetative cells, were fitted to the inactivation data and evaluated. Based on statistical indices and model characteristics, biphasic models with a shoulder were selected and used for quantification. Each model parameter reflected a survival characteristic, and both models were flexible, allowing a reduction of parameters when certain phenomena were not present. Both strains showed enhanced thermotolerance after preexposure to (non)lethal salt stress conditions in the exponential phase. The maximum adaptive stress response due to salt preexposure demonstrated for exponential-phase cells was comparable to the effect of physiological state on thermotolerance in both strains. However, the adaptive salt stress response was less pronounced for transition- and stationary-phase cells. The distinct tailing of strain ATCC 10987 was attributed to the presence of a subpopulation of spores. The existence of a stable heat-resistant subpopulation of vegetative cells could not be demonstrated for either of the strains. Quantification of the adaptive stress response might be instrumental in understanding adaptation mechanisms and will allow the food industry to develop more accurate and reliable stress-integrated predictive modeling to optimize minimal processing conditions. Copyright © 2006, American Society for Microbiology. All Rights Reserved. en
heal.journalName Applied and Environmental Microbiology en
dc.identifier.issue 9 en
dc.identifier.volume 72 en
dc.identifier.doi 10.1128/AEM.00780-06 en
dc.identifier.spage 5884 en
dc.identifier.epage 5894 en

Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search DSpace

Advanced Search


My Account