HEAL DSpace

Catfish feature identification via computer vision

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Jia, P en
dc.contributor.author Evans, MD en
dc.contributor.author Ghate, SR en
dc.date.accessioned 2014-06-06T06:43:01Z
dc.date.available 2014-06-06T06:43:01Z
dc.date.issued 1996 en
dc.identifier.issn 00012351 en
dc.identifier.uri http://62.217.125.90/xmlui/handle/123456789/957
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-0030236427&partnerID=40&md5=613fb7843dc781b7617a5d09141b8017 en
dc.subject Catfish processing en
dc.subject Computer vision en
dc.subject Fin fish processing en
dc.subject Image processing en
dc.subject.other Canny edge detection en
dc.subject.other Catfish feature identification en
dc.subject.other Fin fish processing en
dc.subject.other Algorithms en
dc.subject.other Automation en
dc.subject.other Computer vision en
dc.subject.other Edge detection en
dc.subject.other Feature extraction en
dc.subject.other Image segmentation en
dc.subject.other Labeling en
dc.subject.other Mathematical morphology en
dc.subject.other Food processing en
dc.subject.other Ictalurus punctatus en
dc.title Catfish feature identification via computer vision en
heal.type journalArticle en
heal.publicationDate 1996 en
heal.abstract Computer vision algorithms for automated channel catfish (Ictalurus punctatus) processing were developed to: (1) detect the orientation of a catfish; (2) identify the head, tail, pectoral, ventral, and dorsal fins of a catfish; and (3) determine cutting lines for deheading, detailing, and definning (dorsal and ventral fins). The algorithms are invariant to translation, rotation, and scaling of a catfish and are robust to noise. They may be applied to most fin fish processing, and are not limited to catfish. Canny edge detection and a labeling and tracking algorithm were applied to locate the boundary of a catfish. A two-stage, model-based, catfish segmentation algorithm was proposed to locate each part of a catfish. A dominant point detection scheme was proposed and applied to find the points that connect each part of a catfish. Then morphological knowledge of the catfish was used to locate the feature points of each part of the catfish and to determine the cutting lines. The angle of the major axis and center of mass were used to represent the orientation of a catfish.Computer vision algorithms for automated channel catfish (Ictalurus punctatus) processing were developed to: (1) detect the orientation of a catfish; (2) identify the head, tail, pectoral, ventral, and dorsal fins of a catfish; and (3) determine cutting lines for deheading, detailing, and defining (dorsal and ventral fins). The algorithms are invariant to translation, rotation, and scaling of a catfish and are robust to noise. They may be applied to most fin fish processing, and are not limited to catfish. Canny edge detection and a labeling and tracking algorithm were applied to locate the boundary of a catfish. A two-stage, model-based, catfish segmentation algorithm was proposed to locate each part of a catfish. A dominant point detection scheme was proposed and applied to find the points that connect each part of a catfish. Then morphological knowledge of the catfish was used to locate the feature points of each part of the catfish and to determine the cutting lines. The angle of the major axis and center of mass were used to represent the orientation of a catfish. en
heal.journalName Transactions of the American Society of Agricultural Engineers en
dc.identifier.issue 5 en
dc.identifier.volume 39 en
dc.identifier.spage 1923 en
dc.identifier.epage 1931 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναζήτηση DSpace


Σύνθετη Αναζήτηση

Αναζήτηση

Ο Λογαριασμός μου

Στατιστικές