dc.contributor.author |
Farouki, R |
en |
dc.contributor.author |
Sakkalis, T |
en |
dc.date.accessioned |
2014-06-06T06:42:39Z |
|
dc.date.available |
2014-06-06T06:42:39Z |
|
dc.date.issued |
1994 |
en |
dc.identifier.uri |
http://dx.doi.org/10.1007/BF02519035 |
en |
dc.identifier.uri |
http://62.217.125.90/xmlui/handle/123456789/741 |
|
dc.subject |
Hermite Interpolation |
en |
dc.subject |
Numerical Quadrature |
en |
dc.subject |
Satisfiability |
en |
dc.subject |
First Order |
en |
dc.subject |
Higher Order |
en |
dc.subject |
Pythagorean Hodograph |
en |
dc.title |
Pythagorean-hodograph space curves |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/BF02519035 |
en |
heal.publicationDate |
1994 |
en |
heal.abstract |
We investigate the properties of polynomial space curvesr(t)={x(t), y(t), z(t)} whose hodographs (derivatives) satisfy the Pythagorean conditionx′2(t)+y′2(t)+z′2(t)≡σ2(t) for some real polynomial σ(t). The algebraic structure of thecomplete set of regular Pythagorean-hodograph curves in ℝ3 is inherently more complicated than that of the corresponding set in ℝ2. We derive a characterization for allcubic Pythagoreanhodograph space curves, in terms of constraints on |
en |
heal.journalName |
Advances in Computational Mathematics |
en |
dc.identifier.doi |
10.1007/BF02519035 |
en |