dc.contributor.author |
Simos, TE |
en |
dc.contributor.author |
Sideridis, AB |
en |
dc.date.accessioned |
2014-06-06T06:42:28Z |
|
dc.date.available |
2014-06-06T06:42:28Z |
|
dc.date.issued |
1993 |
en |
dc.identifier.issn |
0010485X |
en |
dc.identifier.uri |
http://dx.doi.org/10.1007/BF02280042 |
en |
dc.identifier.uri |
http://62.217.125.90/xmlui/handle/123456789/641 |
|
dc.subject |
AMS Subject Classification: 65L05 |
en |
dc.subject |
dissipative order |
en |
dc.subject |
error estimation |
en |
dc.subject |
hyperbolic equations |
en |
dc.subject |
Periodic initial value problems |
en |
dc.subject |
phase-lag |
en |
dc.title |
Accurate numerical approximations to initial value problems with periodical solutions |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/BF02280042 |
en |
heal.publicationDate |
1993 |
en |
heal.abstract |
An explicit fourth order Runge-Kutta Fehlberg method for the numerical solution of first order differential equations having oscillating solutions is developed in this paper. This method is constructed using a linear homogeneous test equation with phase-lag of order either six or eight and with dissipative order six. Both the schemes are used for the numerical solution of equations describing free and weakly forced oscillations and semidiscretized hyperbolic equations. The numerical results obtained show that the new method is much more accurate than other methods proposed recently. © 1993 Springer-Verlag. |
en |
heal.publisher |
Springer-Verlag |
en |
heal.journalName |
Computing |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.volume |
50 |
en |
dc.identifier.doi |
10.1007/BF02280042 |
en |
dc.identifier.spage |
87 |
en |
dc.identifier.epage |
92 |
en |