HEAL DSpace

Waiting Time for an Almost Perfect Run and Applications in Statistical Process Control

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Bersimis, S en
dc.contributor.author Koutras, MV en
dc.contributor.author Papadopoulos, GK en
dc.date.accessioned 2014-06-06T06:53:09Z
dc.date.available 2014-06-06T06:53:09Z
dc.date.issued 2014 en
dc.identifier.issn 13875841 en
dc.identifier.uri http://dx.doi.org/10.1007/s11009-012-9307-6 en
dc.identifier.uri http://62.217.125.90/xmlui/handle/123456789/6402
dc.subject Almost perfect run en
dc.subject Average run length en
dc.subject Markov chain embeddable random variables en
dc.subject Runs en
dc.subject Runs rules en
dc.subject Scans en
dc.subject Statistical process control en
dc.title Waiting Time for an Almost Perfect Run and Applications in Statistical Process Control en
heal.type journalArticle en
heal.identifier.primary 10.1007/s11009-012-9307-6 en
heal.publicationDate 2014 en
heal.abstract A natural and intuitively appealing generalization of the runs principle arises if instead of looking at fixed-length strings with all their positions occupied by successes, we allow the appearance of a small number of failures. Therefore, the focus is on clusters of consecutive trials which contain large proportion of successes. Such a formation is traditionally called ""scan"" or alternatively, due to the high concentration of successes within it, almost perfect (success) run. In the present paper, we study in detail the waiting time distribution for random variables related to the first occurrence of an almost perfect run in a sequence of Bernoulli trials. Using an appropriate Markov chain embedding approach we present an efficient recursive scheme that permits the construction of the associated transition probability matrix in an algorithmically efficient way. It is worth mentioning that, the suggested methodology, is applicable not only in the case of almost perfect runs, but can tackle the general discrete scan case as well. Two interesting applications in statistical process control are also discussed. © 2012 Springer Science+Business Media New York. en
heal.journalName Methodology and Computing in Applied Probability en
dc.identifier.issue 1 en
dc.identifier.volume 16 en
dc.identifier.doi 10.1007/s11009-012-9307-6 en
dc.identifier.spage 207 en
dc.identifier.epage 222 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναζήτηση DSpace


Σύνθετη Αναζήτηση

Αναζήτηση

Ο Λογαριασμός μου

Στατιστικές