HEAL DSpace

Piecewise evolutionary segmentation for feature extraction in time series models

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Glezakos, TJ en
dc.contributor.author Tsiligiridis, TA en
dc.contributor.author Yialouris, CP en
dc.date.accessioned 2014-06-06T06:53:06Z
dc.date.available 2014-06-06T06:53:06Z
dc.date.issued 2014 en
dc.identifier.issn 09410643 en
dc.identifier.uri http://dx.doi.org/10.1007/s00521-012-1212-y en
dc.identifier.uri http://62.217.125.90/xmlui/handle/123456789/6370
dc.subject Artificial neural networks en
dc.subject Evolutionary computing en
dc.subject Machine learning en
dc.subject Plant virus identification en
dc.subject Support vector machines en
dc.subject Torrential risk management en
dc.subject.other Evolutionary computing en
dc.subject.other Plant virus en
dc.subject.other Secondary data sets en
dc.subject.other Time series data analysis en
dc.subject.other Time series informations en
dc.subject.other Time series modeling en
dc.subject.other Time series models en
dc.subject.other Time-series segmentation en
dc.subject.other Feature extraction en
dc.subject.other Learning systems en
dc.subject.other Neural networks en
dc.subject.other Risk assessment en
dc.subject.other Risk management en
dc.subject.other Support vector machines en
dc.subject.other Viruses en
dc.subject.other Time series en
dc.title Piecewise evolutionary segmentation for feature extraction in time series models en
heal.type journalArticle en
heal.identifier.primary 10.1007/s00521-012-1212-y en
heal.publicationDate 2014 en
heal.abstract The design, development and implementation of an innovative system utilized in feature extraction from time series data models is described in this manuscript. Achieving to design piecewise segmentation patterns on the time series in an evolutionary fashion and use them in order to produce fitter secondary data sets, the developed system adapts itself to the nature of the problem each time and finally elects an optimally parameterized classifier (artificial neural network or support vector machine), along with the fittest time series segmentation pattern. The application of the system onto two different problems involving time series data analysis and requiring predictive and classification capabilities (torrential risk assessment and plant virus identification, respectively), reveals that the proposed methodology was crucial in finding the optimum solution for both problems. Piecewise evolutionary segmentation time series model analysis, utilized by the accompanying software tool, succeeded in controlling the dimensionality and noise inherent in the initial raw time series information. The process eventually proposes a segmentation pattern for each problem, enhancing the potential of the corresponding classifier. © 2012 Springer-Verlag London. en
heal.journalName Neural Computing and Applications en
dc.identifier.issue 2 en
dc.identifier.volume 24 en
dc.identifier.doi 10.1007/s00521-012-1212-y en
dc.identifier.spage 243 en
dc.identifier.epage 257 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναζήτηση DSpace


Σύνθετη Αναζήτηση

Αναζήτηση

Ο Λογαριασμός μου

Στατιστικές