dc.contributor.author |
Kaltsa, O |
en |
dc.contributor.author |
Michon, C |
en |
dc.contributor.author |
Yanniotis, S |
en |
dc.contributor.author |
Mandala, I |
en |
dc.date.accessioned |
2014-06-06T06:52:54Z |
|
dc.date.available |
2014-06-06T06:52:54Z |
|
dc.date.issued |
2013 |
en |
dc.identifier.issn |
13504177 |
en |
dc.identifier.uri |
http://dx.doi.org/10.1016/j.ultsonch.2012.11.011 |
en |
dc.identifier.uri |
http://62.217.125.90/xmlui/handle/123456789/6243 |
|
dc.subject |
Emulsion |
en |
dc.subject |
Gums |
en |
dc.subject |
Ultrasound |
en |
dc.subject |
Whey |
en |
dc.subject.other |
Depletion flocculation |
en |
dc.subject.other |
Dispersed phase |
en |
dc.subject.other |
Droplet sizes |
en |
dc.subject.other |
Emulsion formation |
en |
dc.subject.other |
Energy inputs |
en |
dc.subject.other |
Gums |
en |
dc.subject.other |
High-energy input |
en |
dc.subject.other |
O/W emulsions |
en |
dc.subject.other |
Oil droplets |
en |
dc.subject.other |
Oil formation |
en |
dc.subject.other |
Olive oil |
en |
dc.subject.other |
Optical micrographs |
en |
dc.subject.other |
Storage periods |
en |
dc.subject.other |
Structural modifications |
en |
dc.subject.other |
Submicron |
en |
dc.subject.other |
Ultra-sonication |
en |
dc.subject.other |
Ultrasonic emulsification |
en |
dc.subject.other |
Ultrasonic energy |
en |
dc.subject.other |
Viscosity reduction |
en |
dc.subject.other |
Viscosity value |
en |
dc.subject.other |
Whey |
en |
dc.subject.other |
Whey proteins |
en |
dc.subject.other |
Drops |
en |
dc.subject.other |
Emulsions |
en |
dc.subject.other |
Flocculation |
en |
dc.subject.other |
Particle size analysis |
en |
dc.subject.other |
Proteins |
en |
dc.subject.other |
Stability |
en |
dc.subject.other |
Turbidity |
en |
dc.subject.other |
Ultrasonic applications |
en |
dc.subject.other |
Ultrasonics |
en |
dc.subject.other |
Vegetable oils |
en |
dc.subject.other |
Emulsification |
en |
dc.subject.other |
milk protein |
en |
dc.subject.other |
olive oil |
en |
dc.subject.other |
article |
en |
dc.subject.other |
concentration (parameters) |
en |
dc.subject.other |
crystallization |
en |
dc.subject.other |
differential scanning calorimetry |
en |
dc.subject.other |
emulsion |
en |
dc.subject.other |
enthalpy |
en |
dc.subject.other |
flocculation |
en |
dc.subject.other |
high intensity ultrasonication |
en |
dc.subject.other |
hydrocolloid |
en |
dc.subject.other |
microphotography |
en |
dc.subject.other |
particle size |
en |
dc.subject.other |
pH |
en |
dc.subject.other |
priority journal |
en |
dc.subject.other |
procedures |
en |
dc.subject.other |
turbidity |
en |
dc.subject.other |
ultrasound |
en |
dc.subject.other |
viscosity |
en |
dc.subject.other |
Emulsifying Agents |
en |
dc.subject.other |
Emulsions |
en |
dc.subject.other |
Food Industry |
en |
dc.subject.other |
Food Storage |
en |
dc.subject.other |
Milk Proteins |
en |
dc.subject.other |
Particle Size |
en |
dc.subject.other |
Plant Oils |
en |
dc.subject.other |
Sonication |
en |
dc.subject.other |
Viscosity |
en |
dc.subject.other |
Water |
en |
dc.title |
Ultrasonic energy input influence on the production of sub-micron o/w emulsions containing whey protein and common stabilizers |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.ultsonch.2012.11.011 |
en |
heal.publicationDate |
2013 |
en |
heal.abstract |
Ultrasonication may be a cost-effective emulsion formation technique, but its impact on emulsion final structure and droplet size needs to be further investigated. Olive oil emulsions (20 wt%) were formulated (pH ∼ 7) using whey protein (3 wt%), three kinds of hydrocolloids (0.1-0.5 wt%) and two different emulsification energy inputs (single- and two-stage, methods A and B, respectively). Formula and energy input effects on emulsion performance are discussed. Emulsions stability was evaluated over a 10-day storage period at 5 °C recording the turbidity profiles of the emulsions. Optical micrographs, droplet size and viscosity values were also obtained. A differential scanning calorimetric (DSC) multiple cool-heat cyclic method (40 to -40 °C) was performed to examine stability via crystallization phenomena of the dispersed phase. Ultrasonication energy input duplication from 11 kJ to 25 kJ (method B) resulted in stable emulsions production (reduction of back scattering values, dBS ∼ 1% after 10 days of storage) at 0.5 wt% concentration of any of the stabilizers used. At lower gum amount samples became unstable due to depletion flocculation phenomena, regardless of emulsification energy input used. High energy input during ultrasonic emulsification also resulted in sub-micron oil-droplets emulsions (D50 = 0.615 μm compared to D50 = 1.3 μm using method A) with narrower particle size distribution and in viscosity reduction. DSC experiments revealed no presence of bulk oil formation, suggesting stability for XG 0.5 wt% emulsions prepared by both methods. Reduced enthalpy values found when method B was applied suggesting structural modifications produced by extensive ultrasonication. Change of ultrasonication conditions results in significant changes of oil droplet size and stability of the produced emulsions. © 2012 Elsevier B.V. All rights reserved. |
en |
heal.journalName |
Ultrasonics Sonochemistry |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.volume |
20 |
en |
dc.identifier.doi |
10.1016/j.ultsonch.2012.11.011 |
en |
dc.identifier.spage |
881 |
en |
dc.identifier.epage |
891 |
en |