HEAL DSpace

Rotation-minimizing Euler-Rodrigues rigid-body motion interpolants

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Farouki, RT en
dc.contributor.author Han, CY en
dc.contributor.author Dospra, P en
dc.contributor.author Sakkalis, T en
dc.date.accessioned 2014-06-06T06:52:48Z
dc.date.available 2014-06-06T06:52:48Z
dc.date.issued 2013 en
dc.identifier.issn 01678396 en
dc.identifier.uri http://dx.doi.org/10.1016/j.cagd.2013.03.001 en
dc.identifier.uri http://62.217.125.90/xmlui/handle/123456789/6181
dc.subject Euler-Rodrigues frame en
dc.subject Hopf map en
dc.subject Pythagorean-hodograph curves en
dc.subject Quaternions en
dc.subject Rotation-minimizing frame en
dc.subject Spatial motion planning en
dc.subject.other Euler-Rodrigues frame en
dc.subject.other Hopf maps en
dc.subject.other Pythagorean-hodograph curves en
dc.subject.other Quaternions en
dc.subject.other Rotation-minimizing frame en
dc.subject.other Animation en
dc.subject.other Interpolation en
dc.subject.other Kinematics en
dc.subject.other Robot programming en
dc.subject.other Rotation en
dc.title Rotation-minimizing Euler-Rodrigues rigid-body motion interpolants en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.cagd.2013.03.001 en
heal.publicationDate 2013 en
heal.abstract A characterization for spatial Pythagorean-hodograph (PH) curves of degree 7 with rotation-minimizing Euler-Rodrigues frames (ERFs) is determined, in terms of one real and two complex constraints on the curve coefficients. These curves can interpolate initial/final positions pi and pf and orientational frames (ti,ui,vi) and ( tf,uf,vf) so as to define a rational rotation-minimizing rigid body motion. Two residual free parameters, that determine the magnitudes of the end derivatives, are available for optimizing shape properties of the interpolant. This improves upon existing algorithms for quintic PH curves with rational rotation-minimizing frames (RRMF quintics), which offer no residual freedoms. Moreover, the degree 7 PH curves with rotation-minimizing ERFs are capable of interpolating motion data for which the RRMF quintics do not admit real solutions. Although these interpolants are of higher degree than the RRMF quintics, their rotation-minimizing frames are actually of lower degree (6 versus 8), since they coincide with the ERF. This novel construction of rational rotation-minimizing motions may prove useful in applications such as computer animation, geometric sweep operations, and robot trajectory planning. © 2013 Elsevier B.V. en
heal.journalName Computer Aided Geometric Design en
dc.identifier.issue 7 en
dc.identifier.volume 30 en
dc.identifier.doi 10.1016/j.cagd.2013.03.001 en
dc.identifier.spage 653 en
dc.identifier.epage 671 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναζήτηση DSpace


Σύνθετη Αναζήτηση

Αναζήτηση

Ο Λογαριασμός μου

Στατιστικές