dc.contributor.author |
Ntafis, V |
en |
dc.contributor.author |
Mari, V |
en |
dc.contributor.author |
Decaro, N |
en |
dc.contributor.author |
Papanastassopoulou, M |
en |
dc.contributor.author |
Pardali, D |
en |
dc.contributor.author |
Rallis, TS |
en |
dc.contributor.author |
Kanellos, T |
en |
dc.contributor.author |
Buonavoglia, C |
en |
dc.contributor.author |
Xylouri, E |
en |
dc.date.accessioned |
2014-06-06T06:52:21Z |
|
dc.date.available |
2014-06-06T06:52:21Z |
|
dc.date.issued |
2013 |
en |
dc.identifier.issn |
15671348 |
en |
dc.identifier.uri |
http://dx.doi.org/10.1016/j.meegid.2013.01.014 |
en |
dc.identifier.uri |
http://62.217.125.90/xmlui/handle/123456789/5971 |
|
dc.subject |
Canine coronavirus |
en |
dc.subject |
Characterization |
en |
dc.subject |
Diarrhea |
en |
dc.subject |
Genotype |
en |
dc.subject |
Subtype |
en |
dc.subject.other |
age distribution |
en |
dc.subject.other |
amino terminal sequence |
en |
dc.subject.other |
animal experiment |
en |
dc.subject.other |
article |
en |
dc.subject.other |
controlled study |
en |
dc.subject.other |
Coronavirus |
en |
dc.subject.other |
Coronavirus infection |
en |
dc.subject.other |
Coronavirus type I |
en |
dc.subject.other |
Coronavirus type II |
en |
dc.subject.other |
Coronavirus type IIa |
en |
dc.subject.other |
Coronavirus type IIb |
en |
dc.subject.other |
diarrhea |
en |
dc.subject.other |
dog |
en |
dc.subject.other |
feces analysis |
en |
dc.subject.other |
gene sequence |
en |
dc.subject.other |
genetic analysis |
en |
dc.subject.other |
genetic recombination |
en |
dc.subject.other |
genetic variability |
en |
dc.subject.other |
genotype |
en |
dc.subject.other |
Greece |
en |
dc.subject.other |
nonhuman |
en |
dc.subject.other |
nucleotide sequence |
en |
dc.subject.other |
pathogenesis |
en |
dc.subject.other |
phylogeny |
en |
dc.subject.other |
priority journal |
en |
dc.subject.other |
real time polymerase chain reaction |
en |
dc.subject.other |
reverse transcription polymerase chain reaction |
en |
dc.subject.other |
S gene |
en |
dc.subject.other |
sequence analysis |
en |
dc.subject.other |
Transmissible gastroenteritis virus |
en |
dc.subject.other |
virus characterization |
en |
dc.subject.other |
virus detection |
en |
dc.subject.other |
virus gene |
en |
dc.subject.other |
virus strain |
en |
dc.subject.other |
Amino Acid Sequence |
en |
dc.subject.other |
Animals |
en |
dc.subject.other |
Coinfection |
en |
dc.subject.other |
Coronavirus Infections |
en |
dc.subject.other |
Coronavirus, Canine |
en |
dc.subject.other |
Dogs |
en |
dc.subject.other |
Feces |
en |
dc.subject.other |
Greece |
en |
dc.subject.other |
Molecular Sequence Data |
en |
dc.subject.other |
Phylogeny |
en |
dc.subject.other |
Sequence Alignment |
en |
dc.title |
Canine coronavirus, Greece. Molecular analysis and genetic diversity characterization |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.meegid.2013.01.014 |
en |
heal.publicationDate |
2013 |
en |
heal.abstract |
Canine coronavirus (CCoV) is an etiologic agent of diarrhea in dogs and is known to have spread worldwide. Mild disease or asymptomatic carriage are probably in many cases common outcomes of infection. To date, two different genotypes of CCoV are known, CCoV type I (CCoV-I) and CCoV type II (CCoV-II). CCoV type II is divided in two subtypes, CCoV-IIa (classical strains) and CCoV-IIb, with CCoV-IIb emerging as a result of a putative recombination between CCoV-IIa and transmissible gastroenteritis virus (TGEV). The aim of the present study was to investigate the presence of CCoV in Greece and to genetically analyze the circulating strains. Between December 2007 and December 2009, 206 fecal samples were collected from dogs with diarrhea from kennels, pet shops and veterinary clinics of different country regions. RT-PCR and real time RT-PCR assays were used for CCoV detection and characterization. CCoV was identified in 65.1% of the dogs presenting diarrhea, being more frequently detected in animals younger than 3. months old and in animals housed in groups. In 47% of the positive samples more than one CCoV genotype/subtype were detected, with triple CCoV-I/CCoV-IIa/CCoV-IIb infections being identified for the first time. Molecular and phylogenetic analysis revealed that CCoV-I Greek strains share low genetic relatedness to each other and to the prototype CCoV-I strains in the 5' end of the S gene. Moreover, a divergent CCoV-IIa strain was identified. The circulation of highly variable CCoV-I and CCoV-IIb emerging strains, as well as the detection of the divergent strain, raise concerns on the importance of these new strains as primary pathogens of diarrhoeic syndromes diagnosed in dogs. © 2013 Elsevier B.V. |
en |
heal.journalName |
Infection, Genetics and Evolution |
en |
dc.identifier.volume |
16 |
en |
dc.identifier.doi |
10.1016/j.meegid.2013.01.014 |
en |
dc.identifier.spage |
129 |
en |
dc.identifier.epage |
136 |
en |