HEAL DSpace

A comparison of Raman and FT-IR spectroscopy for the prediction of meat spoilage

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Argyri, AA en
dc.contributor.author Jarvis, RM en
dc.contributor.author Wedge, D en
dc.contributor.author Xu, Y en
dc.contributor.author Panagou, EZ en
dc.contributor.author Goodacre, R en
dc.contributor.author Nychas, GJE en
dc.date.accessioned 2014-06-06T06:52:15Z
dc.date.available 2014-06-06T06:52:15Z
dc.date.issued 2013 en
dc.identifier.issn 09567135 en
dc.identifier.uri http://dx.doi.org/10.1016/j.foodcont.2012.05.040 en
dc.identifier.uri http://62.217.125.90/xmlui/handle/123456789/5926
dc.subject Evolutionary computing en
dc.subject FT-IR en
dc.subject Meat spoilage en
dc.subject Multivariate analysis en
dc.subject Raman spectroscopy en
dc.subject.other Enterobacteriaceae en
dc.title A comparison of Raman and FT-IR spectroscopy for the prediction of meat spoilage en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.foodcont.2012.05.040 en
heal.publicationDate 2013 en
heal.abstract In this study, time series spectroscopic, microbiological and sensory analysis data were obtained from minced beef samples stored under different packaging conditions (aerobic and modified atmosphere packaging) at 5°C. These data were analyzed using machine learning and evolutionary computing methods, including partial least square regression (PLS-R), genetic programming (GP), genetic algorithm (GA), artificial neural networks (ANNs) and support vector machines regression (SVR) including different kernel functions [i.e. linear (SVR L), polynomial (SVR P), radial basis (RBF) (SVR R) and sigmoid functions (SVR S)]. Models predictive of the microbiological load and sensory assessment were calculated using these methods and the relative performance compared. In general, it was observed that for both FT-IR and Raman calibration models, better predictions were obtained for TVC, LAB and Enterobacteriaceae, whilst the FT-IR models performed in general slightly better in predicting the microbial counts compared to the Raman models. Additionally, regarding the predictions of the microbial counts the multivariate methods (SVM, PLS) that had similar performances gave better predictions compared to the evolutionary ones (GA-GP, GA-ANN, GP). On the other hand, the GA-GP model performed better from the others in predicting the sensory scores using the FT-IR data, whilst the GA-ANN model performed better in predicting the sensory scores using the Raman data. The results of this study demonstrate for the first time that Raman spectroscopy as well as FT-IR spectroscopy can be used reliably and accurately for the rapid assessment of meat spoilage. © 2012 Elsevier Ltd. en
heal.journalName Food Control en
dc.identifier.issue 2 en
dc.identifier.volume 29 en
dc.identifier.doi 10.1016/j.foodcont.2012.05.040 en
dc.identifier.spage 461 en
dc.identifier.epage 470 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναζήτηση DSpace


Σύνθετη Αναζήτηση

Αναζήτηση

Ο Λογαριασμός μου

Στατιστικές