HEAL DSpace

Geographical Characterization of Greek Olive Oils Using Rare Earth Elements Content and Supervised Chemometric Techniques

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Farmaki, EG en
dc.contributor.author Thomaidis, NS en
dc.contributor.author Minioti, KS en
dc.contributor.author Ioannou, E en
dc.contributor.author Georgiou, CA en
dc.contributor.author Efstathiou, CE en
dc.date.accessioned 2014-06-06T06:52:14Z
dc.date.available 2014-06-06T06:52:14Z
dc.date.issued 2012 en
dc.identifier.issn 00032719 en
dc.identifier.uri http://dx.doi.org/10.1080/00032719.2012.655656 en
dc.identifier.uri http://62.217.125.90/xmlui/handle/123456789/5916
dc.subject ANNs en
dc.subject Classification trees (CTs) en
dc.subject Geographical origin en
dc.subject Olive oil en
dc.subject REE en
dc.title Geographical Characterization of Greek Olive Oils Using Rare Earth Elements Content and Supervised Chemometric Techniques en
heal.type journalArticle en
heal.identifier.primary 10.1080/00032719.2012.655656 en
heal.publicationDate 2012 en
heal.abstract Different ANNs models [Multi-layer Perceptrons (MLPs) and Radial Basis Function (RBF)] were developed and evaluated for the discrimination of olive oils produced in four Greek regions according to their geographical origin. For this purpose, ninety-seven samples were analyzed for 10 rare earth elements (REE) by ICP-MS. Moreover, two additional supervised techniques, discriminant analysis (DA) and classification trees (CTs), were applied to the same set for the data pre-treatment and for comparison purposes. In addition, two approaches were used for models' training and evaluation: the classical random choice of samples for the learning data set and an innovative one, which used the two linear discriminant functions (LDFs) of the preceding DA to choose the most representative learning sample set. The results were very satisfactory for the new ANNs classifiers. Over-fitting phenomena were overcome and the prediction ability was 73%, as evaluated by an independent test sample set. The results are encouraging for the ANNs efficiency even in demanding data bases, as the one under consideration.[Supplementary materials are available for this article. Go to the publisher's online edition of Analytical Letters for the following free supplemental resources: Additional figures and tables.]. © 2012 Copyright Taylor and Francis Group, LLC. en
heal.journalName Analytical Letters en
dc.identifier.issue 8 en
dc.identifier.volume 45 en
dc.identifier.doi 10.1080/00032719.2012.655656 en
dc.identifier.spage 920 en
dc.identifier.epage 932 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναζήτηση DSpace


Σύνθετη Αναζήτηση

Αναζήτηση

Ο Λογαριασμός μου

Στατιστικές