HEAL DSpace

Shortwave infrared hyperspectral imaging for detecting sour skin (Burkholderia cepacia)-infected onions

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Wang, W en
dc.contributor.author Li, C en
dc.contributor.author Tollner, EW en
dc.contributor.author Gitaitis, RD en
dc.contributor.author Rains, GC en
dc.date.accessioned 2014-06-06T06:52:05Z
dc.date.available 2014-06-06T06:52:05Z
dc.date.issued 2012 en
dc.identifier.issn 02608774 en
dc.identifier.uri http://dx.doi.org/10.1016/j.jfoodeng.2011.10.001 en
dc.identifier.uri http://62.217.125.90/xmlui/handle/123456789/5834
dc.subject Food quality and safety en
dc.subject Hyperspectral imaging en
dc.subject Log-ratio image en
dc.subject Onion en
dc.subject Sour skin en
dc.subject Support vector machine en
dc.subject.other Food quality and safeties en
dc.subject.other Hyperspectral imaging en
dc.subject.other Log-ratio images en
dc.subject.other Onion en
dc.subject.other Support vector en
dc.subject.other Discriminant analysis en
dc.subject.other Food safety en
dc.subject.other Imaging systems en
dc.subject.other Losses en
dc.subject.other Support vector machines en
dc.subject.other Principal component analysis en
dc.subject.other Allium cepa en
dc.subject.other Burkholderia cepacia en
dc.title Shortwave infrared hyperspectral imaging for detecting sour skin (Burkholderia cepacia)-infected onions en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.jfoodeng.2011.10.001 en
heal.publicationDate 2012 en
heal.abstract Sour skin (Burkholderia cepacia) is a major postharvest disease for onions and causes substantial production and economic losses in onion postharvest. In this study, a shortwave infrared hyperspectral imaging system was explored to detect sour skin. The hyperspectral reflectance images (950-1650 nm) of onions were obtained for the healthy and sour skin-infected onions. Principal component analysis conducted on the spectra of the healthy and sour skin-infected onions suggested that the neck area of the onion at two wavelengths (1070 and 1400 nm) was most indicative of the sour skin. Log-ratio images utilizing the two optimal wavelengths were used for two different image analysis approaches. The first method applied a global threshold (0.45) to segregate the sour skin-infected areas from log-ratio images. Using the pixel number of the segregated areas, Fisher's discriminant analysis recognized 80% healthy and sour skin-infected onions. The second classification approach used three parameters (max, contrast, and homogeneity) of the log-ratio images as the input features of support vector machine (Gaussian kernel, γ = 1.5), which discriminated 87.14% healthy and sour skin-infected onions. The result of this study can be used to further develop a multispectral imaging system to detect sour skin-infected onions on packing lines. © 2011 Elsevier Ltd. All rights reserved. en
heal.journalName Journal of Food Engineering en
dc.identifier.issue 1 en
dc.identifier.volume 109 en
dc.identifier.doi 10.1016/j.jfoodeng.2011.10.001 en
dc.identifier.spage 38 en
dc.identifier.epage 48 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναζήτηση DSpace


Σύνθετη Αναζήτηση

Αναζήτηση

Ο Λογαριασμός μου

Στατιστικές