| dc.contributor.author | 
Sakkalis, T | 
en | 
| dc.contributor.author | 
Farouki, RT | 
en | 
| dc.date.accessioned | 
2014-06-06T06:52:00Z | 
 | 
| dc.date.available | 
2014-06-06T06:52:00Z | 
 | 
| dc.date.issued | 
2012 | 
en | 
| dc.identifier.issn | 
03770427 | 
en | 
| dc.identifier.uri | 
http://dx.doi.org/10.1016/j.cam.2012.04.002 | 
en | 
| dc.identifier.uri | 
http://62.217.125.90/xmlui/handle/123456789/5810 | 
 | 
| dc.subject | 
Complex numbers | 
en | 
| dc.subject | 
Hopf map | 
en | 
| dc.subject | 
Octonions | 
en | 
| dc.subject | 
Parameterization of n-tuples | 
en | 
| dc.subject | 
Pythagorean-hodograph curves | 
en | 
| dc.subject | 
Quaternions | 
en | 
| dc.subject.other | 
Complex number | 
en | 
| dc.subject.other | 
N-tuples | 
en | 
| dc.subject.other | 
Octonions | 
en | 
| dc.subject.other | 
Pythagorean-hodograph curves | 
en | 
| dc.subject.other | 
Quaternions | 
en | 
| dc.subject.other | 
Number theory | 
en | 
| dc.subject.other | 
Polynomials | 
en | 
| dc.subject.other | 
Kinematics | 
en | 
| dc.title | 
Pythagorean-hodograph curves in Euclidean spaces of dimension greater than 3 | 
en | 
| heal.type | 
journalArticle | 
en | 
| heal.identifier.primary | 
10.1016/j.cam.2012.04.002 | 
en | 
| heal.publicationDate | 
2012 | 
en | 
| heal.abstract | 
A polynomial Pythagorean-hodograph (PH) curve r(t)=( x1(t),..., xn(t)) in Rn is characterized by the property that its derivative components satisfy the Pythagorean condition x1′2(t) +⋯+xn′2(t)= σ2(t) for some polynomial σ(t), ensuring that the arc length s(t)=∫σ(t)dt is simply a polynomial in the curve parameter t. PH curves have thus far been extensively studied in R2 and R3, by means of the complex-number and the quaternion or Hopf map representations, and the basic theory and algorithms for their practical construction and analysis are currently well-developed. However, the case of PH curves in Rn for n>3 remains largely unexplored, due to difficulties with the characterization of Pythagorean (n+1)-tuples when n>3. Invoking recent results from number theory, we characterize the structure of PH curves in dimensions n=5 and n=9, and investigate some of their properties. © 2012 Elsevier B.V. All rights reserved. | 
en | 
| heal.journalName | 
Journal of Computational and Applied Mathematics | 
en | 
| dc.identifier.issue | 
17 | 
en | 
| dc.identifier.volume | 
236 | 
en | 
| dc.identifier.doi | 
10.1016/j.cam.2012.04.002 | 
en | 
| dc.identifier.spage | 
4375 | 
en | 
| dc.identifier.epage | 
4382 | 
en |