HEAL DSpace

Hyperion hyperspectral imagery analysis combined with machine learning classifiers for land use/cover mapping

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Petropoulos, GP en
dc.contributor.author Arvanitis, K en
dc.contributor.author Sigrimis, N en
dc.date.accessioned 2014-06-06T06:51:50Z
dc.date.available 2014-06-06T06:51:50Z
dc.date.issued 2012 en
dc.identifier.issn 09574174 en
dc.identifier.uri http://dx.doi.org/10.1016/j.eswa.2011.09.083 en
dc.identifier.uri http://62.217.125.90/xmlui/handle/123456789/5729
dc.subject Artificial Neural Networks (ANNs) en
dc.subject Classification en
dc.subject Greece en
dc.subject Hyperion en
dc.subject Land cover/use mapping en
dc.subject Mediterranean en
dc.subject Remote sensing en
dc.subject Support Vector Machines (SVMs) en
dc.subject.other Greece en
dc.subject.other Hyperion en
dc.subject.other Land cover/use en
dc.subject.other Mediterranean en
dc.subject.other Support vector en
dc.subject.other Climatology en
dc.subject.other Data reduction en
dc.subject.other Image resolution en
dc.subject.other Landforms en
dc.subject.other Maps en
dc.subject.other Neural networks en
dc.subject.other Spatial distribution en
dc.subject.other Support vector machines en
dc.subject.other Weathering en
dc.subject.other Remote sensing en
dc.title Hyperion hyperspectral imagery analysis combined with machine learning classifiers for land use/cover mapping en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.eswa.2011.09.083 en
heal.publicationDate 2012 en
heal.abstract Describing the pattern and the spatial distribution of land cover is traditionally based on remote sensing data analysis and one of the most commonly techniques applied has been image classification. The main objective of the present study has been to evaluate the combined use of Hyperion hyperspectral imagery with the Support Vector Machines (SVMs) and Artificial Neural Networks (ANNs) classifiers for discriminating land-cover classes in a typical Mediterranean setting. Accuracy assessment of the derived thematic maps was based on the analysis of the classification confusion matrix statistics computed for each classification map, using for consistency the same set of validation points. Results indicated a close classification accuracy between the two classifiers, with the SVMs somehow outperforming the ANNs by 3.31% overall accuracy and by 0.038 kappa coefficient. Although both classifiers produced close results, SVMs generally appeared most useful in describing the spatial distribution and the cover density of each land cover category. The higher classification accuracy by SVMs was attributed principally to the ability of this classifier to identify an optimal separating hyperplane for classes' separation which allows a low generalization error, thus producing the best possible classes' separation. On the other, as a key disadvantage of both techniques was identified that both do not operate on a sub-pixel level, which can significantly reduce their accuracy due to possible mixture problems occurred when coarse spatial resolution remote sensing imagery is used. All in all, this study demonstrated that, provided that a Hyperion hyperspectral imagery can be made available at regular time intervals over a given region, when combined with either SVMs or ANNs classifiers, can potentially enable a wider approach in land use/cover mapping. This can be of particular importance, especially for regions like in the Mediterranean basin, since it can be related to mapping and monitoring of land degradation and desertification phenomena which are evident in such areas. © 2011 Elsevier Ltd. All rights reserved. en
heal.journalName Expert Systems with Applications en
dc.identifier.issue 3 en
dc.identifier.volume 39 en
dc.identifier.doi 10.1016/j.eswa.2011.09.083 en
dc.identifier.spage 3800 en
dc.identifier.epage 3809 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναζήτηση DSpace


Σύνθετη Αναζήτηση

Αναζήτηση

Ο Λογαριασμός μου

Στατιστικές