dc.contributor.author |
Song, C |
en |
dc.contributor.author |
Chen, J |
en |
dc.contributor.author |
Abell, JL |
en |
dc.contributor.author |
Cui, Y |
en |
dc.contributor.author |
Zhao, Y |
en |
dc.date.accessioned |
2014-06-06T06:51:37Z |
|
dc.date.available |
2014-06-06T06:51:37Z |
|
dc.date.issued |
2012 |
en |
dc.identifier.issn |
07437463 |
en |
dc.identifier.uri |
http://dx.doi.org/10.1021/la203772u |
en |
dc.identifier.uri |
http://62.217.125.90/xmlui/handle/123456789/5597 |
|
dc.subject.other |
4-Mercaptophenol |
en |
dc.subject.other |
Ag nanorods |
en |
dc.subject.other |
Apparent contact angle |
en |
dc.subject.other |
Characterization techniques |
en |
dc.subject.other |
Coating time |
en |
dc.subject.other |
Controlled thickness |
en |
dc.subject.other |
Core-shell |
en |
dc.subject.other |
Exponential decays |
en |
dc.subject.other |
Linear functions |
en |
dc.subject.other |
Localized surface plasmon resonance |
en |
dc.subject.other |
Monotonic decrease |
en |
dc.subject.other |
Morphological characterization |
en |
dc.subject.other |
Nanorod arrays |
en |
dc.subject.other |
Oblique angles |
en |
dc.subject.other |
Porous silica |
en |
dc.subject.other |
Porous SiO |
en |
dc.subject.other |
Red shift |
en |
dc.subject.other |
Shell thickness |
en |
dc.subject.other |
Surface coverages |
en |
dc.subject.other |
Surface wettability |
en |
dc.subject.other |
Tetra-ethyl-ortho-silicate |
en |
dc.subject.other |
Transverse mode |
en |
dc.subject.other |
Wavelength change |
en |
dc.subject.other |
Wetting property |
en |
dc.subject.other |
Coatings |
en |
dc.subject.other |
Contact angle |
en |
dc.subject.other |
Nanorods |
en |
dc.subject.other |
Optical properties |
en |
dc.subject.other |
Silica |
en |
dc.subject.other |
Silicon compounds |
en |
dc.subject.other |
Silver |
en |
dc.subject.other |
Substrates |
en |
dc.subject.other |
Surface plasmon resonance |
en |
dc.subject.other |
Shells (structures) |
en |
dc.subject.other |
nanotube |
en |
dc.subject.other |
silicon dioxide |
en |
dc.subject.other |
silver |
en |
dc.subject.other |
article |
en |
dc.subject.other |
chemistry |
en |
dc.subject.other |
near infrared spectroscopy |
en |
dc.subject.other |
scanning electron microscopy |
en |
dc.subject.other |
surface property |
en |
dc.subject.other |
transmission electron microscopy |
en |
dc.subject.other |
wettability |
en |
dc.subject.other |
Microscopy, Electron, Scanning |
en |
dc.subject.other |
Microscopy, Electron, Transmission |
en |
dc.subject.other |
Nanotubes |
en |
dc.subject.other |
Silicon Dioxide |
en |
dc.subject.other |
Silver |
en |
dc.subject.other |
Spectroscopy, Near-Infrared |
en |
dc.subject.other |
Surface Properties |
en |
dc.subject.other |
Wettability |
en |
dc.title |
Ag-SiO 2 core-shell nanorod arrays: Morphological, optical, SERS, and wetting properties |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1021/la203772u |
en |
heal.publicationDate |
2012 |
en |
heal.abstract |
Using the hydrolysis of tetraethylorthosilicate, a uniform and conformal layer of porous SiO 2 with controlled thickness has been coated onto the oblique angle deposited Ag nanorod (AgNR) array to form an aligned AgNR-SiO 2 core-shell array nanostructure. The morphology, optical property, SERS response, and surface wettability of the AgNRs with different SiO 2 shell thicknesses have been obtained by multiple characterization techniques. The morphological characterization shows that each AgNR on the array is coated with a uniform and porous silica shell independently and the growth of shell thickness follows a linear function versus the coating time. Thickening of the shell induces a monotonic decrease of the apparent contact angle, red-shift of the transverse mode of the localized surface plasmon resonance peak, and makes the SiO 2 shell more compact. The SERS response of 4-Mercaptophenol on these substrates exhibits an exponential decay behavior with the increasing coating time, which is ascribed to the decreasing Ag surface coverage of core-shell nanorods. Under the assumption that the Ag surface coverage is proportional to the SERS intensity, one can estimate the evolution of SiO 2 coverage on AgNRs. Such coverage evolution can be used to qualitatively explain the LSPR wavelength change and quantitatively interpret the contact angle change based on a double Cassies law. © 2011 American Chemical Society. |
en |
heal.journalName |
Langmuir |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.volume |
28 |
en |
dc.identifier.doi |
10.1021/la203772u |
en |
dc.identifier.spage |
1488 |
en |
dc.identifier.epage |
1495 |
en |