dc.contributor.author |
Chorianopoulos, NG |
en |
dc.contributor.author |
Tsoukleris, DS |
en |
dc.contributor.author |
Panagou, EZ |
en |
dc.contributor.author |
Falaras, P |
en |
dc.contributor.author |
Nychas, G-JE |
en |
dc.date.accessioned |
2014-06-06T06:51:31Z |
|
dc.date.available |
2014-06-06T06:51:31Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.issn |
07400020 |
en |
dc.identifier.uri |
http://dx.doi.org/10.1016/j.fm.2010.07.025 |
en |
dc.identifier.uri |
http://62.217.125.90/xmlui/handle/123456789/5550 |
|
dc.subject |
Biofilm |
en |
dc.subject |
Listeria monocytogenes |
en |
dc.subject |
Nanoparticles |
en |
dc.subject |
Photocatalysis |
en |
dc.subject |
Titanium dioxide (TiO2) |
en |
dc.subject |
UV-irradiation |
en |
dc.subject.other |
Bacteria (microorganisms) |
en |
dc.subject.other |
Listeria monocytogenes |
en |
dc.subject.other |
photosensitizing agent |
en |
dc.subject.other |
stainless steel |
en |
dc.subject.other |
titanium |
en |
dc.subject.other |
titanium dioxide |
en |
dc.subject.other |
article |
en |
dc.subject.other |
bacterial count |
en |
dc.subject.other |
biofilm |
en |
dc.subject.other |
disinfection |
en |
dc.subject.other |
drug effect |
en |
dc.subject.other |
equipment |
en |
dc.subject.other |
food contamination |
en |
dc.subject.other |
food control |
en |
dc.subject.other |
food industry |
en |
dc.subject.other |
food safety |
en |
dc.subject.other |
growth, development and aging |
en |
dc.subject.other |
Listeria monocytogenes |
en |
dc.subject.other |
Biofilms |
en |
dc.subject.other |
Colony Count, Microbial |
en |
dc.subject.other |
Disinfection |
en |
dc.subject.other |
Equipment Contamination |
en |
dc.subject.other |
Food Contamination |
en |
dc.subject.other |
Food Microbiology |
en |
dc.subject.other |
Food Safety |
en |
dc.subject.other |
Food-Processing Industry |
en |
dc.subject.other |
Listeria monocytogenes |
en |
dc.subject.other |
Photosensitizing Agents |
en |
dc.subject.other |
Stainless Steel |
en |
dc.subject.other |
Titanium |
en |
dc.title |
Use of titanium dioxide (TiO2) photocatalysts as alternative means for Listeria monocytogenes biofilm disinfection in food processing |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.fm.2010.07.025 |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
The aim of this work was to study the photocatalytic activity of titanium dioxide (TiO2) against Listeria monocytogenes bacterial biofilm. Different TiO2 nanostructured thin films were deposited on surfaces such as stainless steel and glass using the doctor-blade technique. All the surfaces were placed in test tubes containing Brain Heart (BH) broth and inoculated with L. monocytogenes. Test tubes were then incubated for 10 days at 16°C in order to allow biofilm development. After biofilm formation, the surfaces were illuminated by ultraviolet A light (UVA; wavelength of 315-400nm). The quantification of biofilms was performed using the bead vortexing method, followed by agar plating and/or by conductance measurements (via the metabolic activity of biofilm cells). The presence of the TiO2 nanoparticles resulted in a fastest log-reduction of bacterial biofilm compared to the control test. The biofilm of L. monocytogenes for the glass nanoparticle 1 (glass surface modified by 16% w/v TiO2) was found to have decreased by 3log CFU/cm2 after 90min irradiation by UVA. The use of TiO2 nanostructured photocatalysts as alternative means of disinfecting contaminated surfaces presents an intriguing case, which by further development may provide potent disinfecting solutions. Surface modification using nanostructured titania and UV irradiation is an innovative combination to enhance food safety and economizing time and money. © 2010 Elsevier Ltd. |
en |
heal.journalName |
Food Microbiology |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.volume |
28 |
en |
dc.identifier.doi |
10.1016/j.fm.2010.07.025 |
en |
dc.identifier.spage |
164 |
en |
dc.identifier.epage |
170 |
en |