dc.contributor.author |
Quoilin, S |
en |
dc.contributor.author |
Declaye, S |
en |
dc.contributor.author |
Tchanche, BF |
en |
dc.contributor.author |
Lemort, V |
en |
dc.date.accessioned |
2014-06-06T06:51:30Z |
|
dc.date.available |
2014-06-06T06:51:30Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.issn |
13594311 |
en |
dc.identifier.uri |
http://dx.doi.org/10.1016/j.applthermaleng.2011.05.014 |
en |
dc.identifier.uri |
http://62.217.125.90/xmlui/handle/123456789/5542 |
|
dc.subject |
Optimization |
en |
dc.subject |
ORC |
en |
dc.subject |
Organic Rankine Cycle |
en |
dc.subject |
Thermoeconomics |
en |
dc.subject |
Waste Heat Reovery |
en |
dc.subject |
WHR |
en |
dc.subject.other |
Cycle performance |
en |
dc.subject.other |
Economic optimization |
en |
dc.subject.other |
Evaporating temperature |
en |
dc.subject.other |
Fluid densities |
en |
dc.subject.other |
Fluid property |
en |
dc.subject.other |
Lower density |
en |
dc.subject.other |
Maximum power |
en |
dc.subject.other |
n-Butane |
en |
dc.subject.other |
N-pentane |
en |
dc.subject.other |
Objective functions |
en |
dc.subject.other |
Operating points |
en |
dc.subject.other |
ORC |
en |
dc.subject.other |
Organic Rankine cycles |
en |
dc.subject.other |
Output power |
en |
dc.subject.other |
Overall efficiency |
en |
dc.subject.other |
Small scale |
en |
dc.subject.other |
Specific cost |
en |
dc.subject.other |
Specific investment |
en |
dc.subject.other |
Thermo-economics |
en |
dc.subject.other |
Thermodynamic efficiency |
en |
dc.subject.other |
Thermodynamic optimization |
en |
dc.subject.other |
Thermoeconomic optimization |
en |
dc.subject.other |
WHR |
en |
dc.subject.other |
Working conditions |
en |
dc.subject.other |
Working fluid |
en |
dc.subject.other |
Butane |
en |
dc.subject.other |
Economics |
en |
dc.subject.other |
Efficiency |
en |
dc.subject.other |
Energy conversion |
en |
dc.subject.other |
Fluids |
en |
dc.subject.other |
Optimization |
en |
dc.subject.other |
Profitability |
en |
dc.subject.other |
Rankine cycle |
en |
dc.subject.other |
Waste heat |
en |
dc.subject.other |
Waste heat utilization |
en |
dc.title |
Thermo-economic optimization of waste heat recovery Organic Rankine Cycles |
en |
heal.type |
other |
en |
heal.identifier.primary |
10.1016/j.applthermaleng.2011.05.014 |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
The present paper focuses both on the thermodynamic and on the economic optimization of a small scale ORC in waste heat recovery application. A sizing model of the ORC is proposed, capable of predicting the cycle performance with different working fluids and different components sizes. The working fluids considered are R245fa, R123, n-butane, n-pentane and R1234yf and Solkatherm. Results indicate that, for the same fluid, the objective functions (economics profitability, thermodynamic efficiency) lead to different optimal working conditions in terms of evaporating temperature: the operating point for maximum power doesn't correspond to that of the minimum specific investment cost: The economical optimum is obtained for n-butane with a specific cost of 2136 €/kW, a net output power of 4.2 kW, and an overall efficiency of 4.47%, while the thermodynamic optimum is obtained for the same fluid with an overall efficiency of 5.22%. It is also noted that the two optimizations can even lead to the selection of a different working fluid. This is mainly due to additional fluid properties that are not taken into account in the thermodynamic optimization, such as the fluid density: a lower density leads to the selection of bigger components which increases the cost and decreases the economical profitability. © 2011 Elsevier Ltd. All rights reserved. |
en |
heal.journalName |
Applied Thermal Engineering |
en |
dc.identifier.issue |
14-15 |
en |
dc.identifier.volume |
31 |
en |
dc.identifier.doi |
10.1016/j.applthermaleng.2011.05.014 |
en |
dc.identifier.spage |
2885 |
en |
dc.identifier.epage |
2893 |
en |