dc.contributor.author |
Kanakis, CD |
en |
dc.contributor.author |
Hasni, I |
en |
dc.contributor.author |
Bourassa, P |
en |
dc.contributor.author |
Tarantilis, PA |
en |
dc.contributor.author |
Polissiou, MG |
en |
dc.contributor.author |
Tajmir-Riahi, H-A |
en |
dc.date.accessioned |
2014-06-06T06:51:22Z |
|
dc.date.available |
2014-06-06T06:51:22Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.issn |
03088146 |
en |
dc.identifier.uri |
http://dx.doi.org/10.1016/j.foodchem.2011.01.079 |
en |
dc.identifier.uri |
http://62.217.125.90/xmlui/handle/123456789/5479 |
|
dc.subject |
β-Lactoglobulin |
en |
dc.subject |
CD |
en |
dc.subject |
Fluorescence spectroscopy |
en |
dc.subject |
FTIR |
en |
dc.subject |
Milk |
en |
dc.subject |
Modelling |
en |
dc.subject |
Polyphenol |
en |
dc.subject |
Secondary structure |
en |
dc.subject |
Tea |
en |
dc.subject.other |
CD |
en |
dc.subject.other |
FTIR |
en |
dc.subject.other |
Lactoglobulin |
en |
dc.subject.other |
Milk |
en |
dc.subject.other |
Modelling |
en |
dc.subject.other |
Polyphenols |
en |
dc.subject.other |
Secondary structure |
en |
dc.subject.other |
Tea |
en |
dc.subject.other |
Amino acids |
en |
dc.subject.other |
Binding energy |
en |
dc.subject.other |
Complexation |
en |
dc.subject.other |
Electrocardiography |
en |
dc.subject.other |
Electrochromic devices |
en |
dc.subject.other |
Fluorescence |
en |
dc.subject.other |
Fluorescence spectroscopy |
en |
dc.subject.other |
Hydrophobicity |
en |
dc.subject.other |
Molecular modeling |
en |
dc.subject.other |
Proteins |
en |
dc.subject.other |
Spectroscopic analysis |
en |
dc.subject.other |
Structural analysis |
en |
dc.subject.other |
Phenols |
en |
dc.subject.other |
beta lactoglobulin |
en |
dc.subject.other |
catechin |
en |
dc.subject.other |
epicatechin |
en |
dc.subject.other |
epicatechin gallate |
en |
dc.subject.other |
epigallocatechin gallate |
en |
dc.subject.other |
polyphenol derivative |
en |
dc.subject.other |
alpha helix |
en |
dc.subject.other |
antioxidant activity |
en |
dc.subject.other |
article |
en |
dc.subject.other |
beta sheet |
en |
dc.subject.other |
binding affinity |
en |
dc.subject.other |
circular dichroism |
en |
dc.subject.other |
fluorescence spectroscopy |
en |
dc.subject.other |
hydrogen bond |
en |
dc.subject.other |
infrared spectroscopy |
en |
dc.subject.other |
milk |
en |
dc.subject.other |
molecular docking |
en |
dc.subject.other |
molecular model |
en |
dc.subject.other |
protein conformation |
en |
dc.subject.other |
protein interaction |
en |
dc.subject.other |
protein secondary structure |
en |
dc.subject.other |
protein stability |
en |
dc.subject.other |
tea |
en |
dc.title |
Milk β-lactoglobulin complexes with tea polyphenols |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.foodchem.2011.01.079 |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
The effect of milk on the antioxidant capacity of tea polyphenols is not fully understood. The complexation of tea polyphenols with milk proteins can alter the antioxidant activity of tea compounds and the protein secondary structure. This study was designed to examine the interaction of β-lactogolobulin (β-LG) with tea polyphenols (+)-catechin (C), (-)-epicatechin (EC), (-)-epicatechin gallate (ECG) and (-)-epigallocatechin gallate (EGCG) at molecular level, using FTIR, CD and fluorescence spectroscopic methods as well as molecular modelling. The polyphenol binding mode, the binding constant and the effects of polyphenol complexation on β-LG stability and secondary structure were determined. Structural analysis showed that polyphenols bind β-LG via both hydrophilic and hydrophobic interactions with overall binding constants of K C- β-LG = 2.2 (±0.8) × 10 3 M -1, K EC-β-LG = 3.2 (±1) × 10 3 M -1, K ECG-β -LG = 1.1 (±0.6) × 10 4 M -1 and K EGCG-β-LG = 1.3 (±0.8) × 10 4 M -1. The number of polyphenols bound per protein molecule (n) was 1.1 (C), 0.9 (EC), 0.9 (ECG) and 1.3 (EGCG). Molecular modelling showed the participation of several amino acid residues in polyphenol-protein complexation with extended H-bonding network. The β-LG conformation was altered in the presence of polyphenols with an increase in β-sheet and α-helix suggesting protein structural stabilisation. These data can be used to explain the mechanism by which the antioxidant activity of tea compounds is affected by the addition of milk. © 2011 Elsevier Ltd. All rights reserved. |
en |
heal.journalName |
Food Chemistry |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.volume |
127 |
en |
dc.identifier.doi |
10.1016/j.foodchem.2011.01.079 |
en |
dc.identifier.spage |
1046 |
en |
dc.identifier.epage |
1055 |
en |