dc.contributor.author |
Charitos, C |
en |
dc.contributor.author |
Papadoperakis, I |
en |
dc.date.accessioned |
2014-06-06T06:51:19Z |
|
dc.date.available |
2014-06-06T06:51:19Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.issn |
00335606 |
en |
dc.identifier.uri |
http://dx.doi.org/10.1093/qmath/haq027 |
en |
dc.identifier.uri |
http://62.217.125.90/xmlui/handle/123456789/5454 |
|
dc.title |
Generalized teichmüller space of non-compact 3-manifolds and mostow rigidity |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1093/qmath/haq027 |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
Consider a 3-dimensional manifold N obtained by gluing a finite number of ideal hyperbolic tetrahedra via isometries along their faces. By varying the isometry type of each tetrahedron but keeping fixed the gluing pattern we define a space of complete hyperbolic metrics on N with cone singularities along the edges of the tetrahedra. We prove that is homeomorphic to a Euclidean space and we compute its dimension. By means of examples, we examine if the elements of are uniquely determined by the angles around the edges of N. © 2010 Published by Oxford University Press. All rights reserved. |
en |
heal.journalName |
Quarterly Journal of Mathematics |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.volume |
62 |
en |
dc.identifier.doi |
10.1093/qmath/haq027 |
en |
dc.identifier.spage |
871 |
en |
dc.identifier.epage |
889 |
en |