HEAL DSpace

Equivalence of distinct characterizations for rational rotation-minimizing frames on quintic space curves

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Farouki, RT en
dc.contributor.author Sakkalis, T en
dc.date.accessioned 2014-06-06T06:51:18Z
dc.date.available 2014-06-06T06:51:18Z
dc.date.issued 2011 en
dc.identifier.issn 01678396 en
dc.identifier.uri http://dx.doi.org/10.1016/j.cagd.2011.07.004 en
dc.identifier.uri http://62.217.125.90/xmlui/handle/123456789/5443
dc.subject Complex numbers en
dc.subject Hopf map en
dc.subject Polynomial identities en
dc.subject Pythagorean-hodograph curves en
dc.subject Quaternions en
dc.subject Rotation-minimizing frames en
dc.subject.other Complex number en
dc.subject.other Polynomial identities en
dc.subject.other Pythagorean-hodograph curves en
dc.subject.other Quaternions en
dc.subject.other Rotation-minimizing frames en
dc.subject.other Algorithms en
dc.subject.other Animation en
dc.subject.other Kinematics en
dc.subject.other Robot programming en
dc.subject.other Rotation en
dc.title Equivalence of distinct characterizations for rational rotation-minimizing frames on quintic space curves en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.cagd.2011.07.004 en
heal.publicationDate 2011 en
heal.abstract A rotation-minimizing frame on a space curve r(t) is an orthonormal basis (f1,f2,f3) for R3, where f1=r′/|r′| is the curve tangent, and the normal-plane vectors f2,f3 exhibit no instantaneous rotation about f1. Such frames are useful in spatial path planning, swept surface design, computer animation, robotics, and related applications. The simplest curves that have rational rotation-minimizing frames (RRMF curves) comprise a subset of the quintic Pythagorean-hodograph (PH) curves, and two quite different characterizations of them are currently known: (a) through constraints on the PH curve coefficients; and (b) through a certain polynomial divisibility condition. Although (a) is better suited to the formulation of constructive algorithms, (b) has the advantage of remaining valid for curves of any degree. A proof of the equivalence of these two different criteria is presented for PH quintics, together with comments on the generalization to higher-order curves. Although (a) and (b) are both sufficient and necessary criteria for a PH quintic to be an RRMF curve, the (non-obvious) proof presented here helps to clarify the subtle relationships between them. © 2011 Elsevier B.V. All rights reserved. en
heal.journalName Computer Aided Geometric Design en
dc.identifier.issue 7 en
dc.identifier.volume 28 en
dc.identifier.doi 10.1016/j.cagd.2011.07.004 en
dc.identifier.spage 436 en
dc.identifier.epage 445 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναζήτηση DSpace


Σύνθετη Αναζήτηση

Αναζήτηση

Ο Λογαριασμός μου

Στατιστικές