HEAL DSpace

A comparison of artificial neural networks and partial least squares modelling for the rapid detection of the microbial spoilage of beef fillets based on Fourier transform infrared spectral fingerprints

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Panagou, EZ en
dc.contributor.author Mohareb, FR en
dc.contributor.author Argyri, AA en
dc.contributor.author Bessant, CM en
dc.contributor.author Nychas, GJE en
dc.date.accessioned 2014-06-06T06:51:10Z
dc.date.available 2014-06-06T06:51:10Z
dc.date.issued 2011 en
dc.identifier.issn 07400020 en
dc.identifier.uri http://dx.doi.org/10.1016/j.fm.2010.05.014 en
dc.identifier.uri http://62.217.125.90/xmlui/handle/123456789/5363
dc.subject Aerobic storage en
dc.subject Artificial neural networks en
dc.subject Beef fillets en
dc.subject FTIR en
dc.subject Machine learning en
dc.subject Meat spoilage en
dc.subject Partial least squares regression en
dc.subject Pattern recognition en
dc.subject.other animal en
dc.subject.other article en
dc.subject.other artificial neural network en
dc.subject.other bacterial count en
dc.subject.other biological model en
dc.subject.other cattle en
dc.subject.other comparative study en
dc.subject.other food control en
dc.subject.other infrared spectroscopy en
dc.subject.other meat en
dc.subject.other methodology en
dc.subject.other microbiology en
dc.subject.other regression analysis en
dc.subject.other Animals en
dc.subject.other Cattle en
dc.subject.other Colony Count, Microbial en
dc.subject.other Food Microbiology en
dc.subject.other Least-Squares Analysis en
dc.subject.other Meat en
dc.subject.other Models, Biological en
dc.subject.other Neural Networks (Computer) en
dc.subject.other Regression Analysis en
dc.subject.other Spectroscopy, Fourier Transform Infrared en
dc.title A comparison of artificial neural networks and partial least squares modelling for the rapid detection of the microbial spoilage of beef fillets based on Fourier transform infrared spectral fingerprints en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.fm.2010.05.014 en
heal.publicationDate 2011 en
heal.abstract A series of partial least squares (PLS) models were employed to correlate spectral data from FTIR analysis with beef fillet spoilage during aerobic storage at different temperatures (0, 5, 10, 15, and 20 °C) using the dataset presented by Argyri et al. (2010). The performance of the PLS models was compared with a three-layer feed-forward artificial neural network (ANN) developed using the same dataset. FTIR spectra were collected from the surface of meat samples in parallel with microbiological analyses to enumerate total viable counts. Sensory evaluation was based on a three-point hedonic scale classifying meat samples as fresh, semi-fresh, and spoiled. The purpose of the modelling approach employed in this work was to classify beef samples in the respective quality class as well as to predict their total viable counts directly from FTIR spectra. The results obtained demonstrated that both approaches showed good performance in discriminating meat samples in one of the three predefined sensory classes. The PLS classification models showed performances ranging from 72.0 to 98.2% using the training dataset, and from 63.1 to 94.7% using independent testing dataset. The ANN classification model performed equally well in discriminating meat samples, with correct classification rates from 98.2 to 100% and 63.1 to 73.7% in the train and test sessions, respectively. PLS and ANN approaches were also applied to create models for the prediction of microbial counts. The performance of these was based on graphical plots and statistical indices (bias factor, accuracy factor, root mean square error). Furthermore, results demonstrated reasonably good correlation of total viable counts on meat surface with FTIR spectral data with PLS models presenting better performance indices compared to ANN. © 2010 Elsevier Ltd. en
heal.journalName Food Microbiology en
dc.identifier.issue 4 en
dc.identifier.volume 28 en
dc.identifier.doi 10.1016/j.fm.2010.05.014 en
dc.identifier.spage 782 en
dc.identifier.epage 790 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναζήτηση DSpace


Σύνθετη Αναζήτηση

Αναζήτηση

Ο Λογαριασμός μου

Στατιστικές