dc.contributor.author |
Moschopoulou, G |
en |
dc.contributor.author |
Valero, T |
en |
dc.contributor.author |
Kintzios, S |
en |
dc.date.accessioned |
2014-06-06T06:50:59Z |
|
dc.date.available |
2014-06-06T06:50:59Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.issn |
18777058 |
en |
dc.identifier.uri |
http://dx.doi.org/10.1016/j.proeng.2011.12.381 |
en |
dc.identifier.uri |
http://62.217.125.90/xmlui/handle/123456789/5256 |
|
dc.subject |
Bioelectric recognition assay |
en |
dc.subject |
Cell biosensor |
en |
dc.subject |
Immobilization |
en |
dc.subject |
Membrane engineering |
en |
dc.subject |
Superoxide anion |
en |
dc.subject.other |
Bioelectric recognition assays |
en |
dc.subject.other |
Catalytic properties |
en |
dc.subject.other |
Cell sensor |
en |
dc.subject.other |
Cell surfaces |
en |
dc.subject.other |
Detection limits |
en |
dc.subject.other |
Dismutation |
en |
dc.subject.other |
Electrical field |
en |
dc.subject.other |
Fibroblast cells |
en |
dc.subject.other |
Fluorescence assay |
en |
dc.subject.other |
Immobilized cells |
en |
dc.subject.other |
Membrane potentials |
en |
dc.subject.other |
Molecular identification |
en |
dc.subject.other |
Selective inhibition |
en |
dc.subject.other |
Superoxide anions |
en |
dc.subject.other |
Superoxide dismutases |
en |
dc.subject.other |
Superoxides |
en |
dc.subject.other |
Target molecule |
en |
dc.subject.other |
Target recognition |
en |
dc.subject.other |
Bioassay |
en |
dc.subject.other |
Biosensors |
en |
dc.subject.other |
Cell immobilization |
en |
dc.subject.other |
Cell membranes |
en |
dc.subject.other |
Cytology |
en |
dc.subject.other |
Electrophysiology |
en |
dc.subject.other |
Membranes |
en |
dc.subject.other |
Molecules |
en |
dc.subject.other |
Oxygen |
en |
dc.subject.other |
Radioactive waste vitrification |
en |
dc.subject.other |
Sensors |
en |
dc.subject.other |
Cell engineering |
en |
dc.title |
Molecular identification through membrane engineering as a revolutionary concept for the construction of cell sensors with customized target recognition properties: The example of superoxide detection |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1016/j.proeng.2011.12.381 |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
Membrane-engineering is a generic methodology for increasing the selectivity of a cell biosensor against a target molecule, by electroinserting target-specific receptor molecules on the cell surface. We have previously reported the construction of an ultra-sensitive superoxide anion (O 2 •-) sensor based on immobilized cells, which have been membrane-engineered with superoxide dismutase (SOD). In the present study, we provide evidence that superoxide dismutation triggered changes to the membrane potential of membrane-engineered fibroblast cells, as confirmed by electrophysiological and fluorescence assays. In addition, by conducting selective inhibition assays, we show that electroinserted SOD molecules retained their characteristic catalytic properties. We also investigated the effect of the concentration of electroinserted SOD molecules. Finally, we increased the sensitivity of the sensor by hundredfold to a detection limit of 1 pM O 2 •- by changing the intensity of the electrical field during electroinsertion and the concentration of immobilized cells on the performance of the biosensor. © 2011 Published by Elsevier Ltd. |
en |
heal.journalName |
Procedia Engineering |
en |
dc.identifier.volume |
25 |
en |
dc.identifier.doi |
10.1016/j.proeng.2011.12.381 |
en |
dc.identifier.spage |
1541 |
en |
dc.identifier.epage |
1544 |
en |