dc.contributor.author |
Romeis, JJ |
en |
dc.contributor.author |
Jackson, CR |
en |
dc.contributor.author |
Risse, LM |
en |
dc.contributor.author |
Sharpley, AN |
en |
dc.contributor.author |
Radcliffe, DE |
en |
dc.date.accessioned |
2014-06-06T06:50:57Z |
|
dc.date.available |
2014-06-06T06:50:57Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.issn |
1093474X |
en |
dc.identifier.uri |
http://dx.doi.org/10.1111/j.1752-1688.2010.00521.x |
en |
dc.identifier.uri |
http://62.217.125.90/xmlui/handle/123456789/5239 |
|
dc.subject |
Best management practices |
en |
dc.subject |
Nonpoint source pollution |
en |
dc.subject |
Nutrients |
en |
dc.subject |
Runoff |
en |
dc.subject |
Sediment transport |
en |
dc.subject |
Total maximum daily loading |
en |
dc.subject.other |
Best management practices |
en |
dc.subject.other |
Confidence interval |
en |
dc.subject.other |
Data collection |
en |
dc.subject.other |
Data sets |
en |
dc.subject.other |
Drainage area |
en |
dc.subject.other |
Field scale |
en |
dc.subject.other |
Flow condition |
en |
dc.subject.other |
Flow regimes |
en |
dc.subject.other |
Forest cover |
en |
dc.subject.other |
Georgia |
en |
dc.subject.other |
Headwater stream |
en |
dc.subject.other |
Hydrologic response |
en |
dc.subject.other |
Inverse relationship |
en |
dc.subject.other |
Nonpoint source pollution |
en |
dc.subject.other |
Order of magnitude |
en |
dc.subject.other |
Peak flows |
en |
dc.subject.other |
Risk-based managements |
en |
dc.subject.other |
River basins |
en |
dc.subject.other |
Screening tool |
en |
dc.subject.other |
Small streams |
en |
dc.subject.other |
Soil tests |
en |
dc.subject.other |
Total maximum daily loading |
en |
dc.subject.other |
Upper Etowah |
en |
dc.subject.other |
Water quality sampling |
en |
dc.subject.other |
Water samples |
en |
dc.subject.other |
Watershed-scale studies |
en |
dc.subject.other |
Agriculture |
en |
dc.subject.other |
Anoxic sediments |
en |
dc.subject.other |
Landforms |
en |
dc.subject.other |
Nutrients |
en |
dc.subject.other |
Phosphorus |
en |
dc.subject.other |
Pollution |
en |
dc.subject.other |
River pollution |
en |
dc.subject.other |
Runoff |
en |
dc.subject.other |
Sediment transport |
en |
dc.subject.other |
Sedimentology |
en |
dc.subject.other |
Soil mechanics |
en |
dc.subject.other |
Soil testing |
en |
dc.subject.other |
Stream flow |
en |
dc.subject.other |
Water quality |
en |
dc.subject.other |
Watersheds |
en |
dc.subject.other |
Rivers |
en |
dc.subject.other |
best management practice |
en |
dc.subject.other |
concentration (composition) |
en |
dc.subject.other |
confidence interval |
en |
dc.subject.other |
data set |
en |
dc.subject.other |
flow pattern |
en |
dc.subject.other |
forest cover |
en |
dc.subject.other |
hydrological response |
en |
dc.subject.other |
nonpoint source pollution |
en |
dc.subject.other |
pasture |
en |
dc.subject.other |
peak flow |
en |
dc.subject.other |
phosphorus |
en |
dc.subject.other |
poultry |
en |
dc.subject.other |
river basin |
en |
dc.subject.other |
sediment transport |
en |
dc.subject.other |
streamflow |
en |
dc.subject.other |
streamwater |
en |
dc.subject.other |
water pollution |
en |
dc.subject.other |
water quality |
en |
dc.subject.other |
watershed |
en |
dc.subject.other |
Etowah Basin |
en |
dc.subject.other |
Georgia |
en |
dc.subject.other |
United States |
en |
dc.title |
Hydrologic and Phosphorus Export Behavior of Small Streams in Commercial Poultry-Pasture Watersheds |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1111/j.1752-1688.2010.00521.x |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
Few watershed-scale studies have evaluated phosphorus export in streamflow from commercial poultry-pasture operations. Continuous streamflow and mixed-frequency water quality datasets were collected from nine commercial poultry-pasture (AG) and three forested (FORS) headwater streams (2.4-44ha) in the upper Etowah River basin of Georgia to estimate total P (TP) loads and examine variability of hydrologic response and water quality of storm and nonstorm-flow regimes. Data collection duration ranged from 18 to 22months, and approximately 1,600 water quality samples were collected. Significant (p<0.1) inverse relationships were detected between peak flow response variables and both drainage area and fraction of forest cover. Order-of-magnitude differences in TP and dissolved reactive P (DRP) concentration were observed between AG and FORS sites and among AG sites. TP yields of FORS sites ranged from 0.01 to 0.1kg P/ha. Yields of AG sites ranged from 0.031 to 3.17kg P/ha (median=0.354kg P/ha). With 95% confidence intervals, AG yields ranged from 0.025 to 13.1kg P/ha. These small-watershed-scale yields were similar to field-scale yields measured in other studies in other regions. TP yields were significantly related to area-weighted Mehlich-1 soil test P concentrations (p=0.0073) and base-flow water sample P concentrations (p≤0.0005). Water quality sampling during base-flow conditions may be a useful screening tool for P risk-based management programs. © 2011 American Water Resources Association. |
en |
heal.journalName |
Journal of the American Water Resources Association |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.volume |
47 |
en |
dc.identifier.doi |
10.1111/j.1752-1688.2010.00521.x |
en |
dc.identifier.spage |
367 |
en |
dc.identifier.epage |
385 |
en |