HEAL DSpace

Exergy analysis of micro-organic Rankine power cycles for a small scale solar driven reverse osmosis desalination system

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Tchanche, BF en
dc.contributor.author Lambrinos, Gr en
dc.contributor.author Frangoudakis, A en
dc.contributor.author Papadakis, G en
dc.date.accessioned 2014-06-06T06:50:48Z
dc.date.available 2014-06-06T06:50:48Z
dc.date.issued 2010 en
dc.identifier.issn 03062619 en
dc.identifier.uri http://dx.doi.org/10.1016/j.apenergy.2009.07.011 en
dc.identifier.uri http://62.217.125.90/xmlui/handle/123456789/5169
dc.subject Desalination en
dc.subject Exergy analysis en
dc.subject Organic Rankine engines en
dc.subject.other Critical component en
dc.subject.other Dry fluids en
dc.subject.other Energy analysis en
dc.subject.other Exergetic efficiency en
dc.subject.other Exergy Analysis en
dc.subject.other Exergy destructions en
dc.subject.other Exergy flow en
dc.subject.other Exergy loss en
dc.subject.other Heat sources en
dc.subject.other Mathematical graph en
dc.subject.other Mixing units en
dc.subject.other Organic Rankine engines en
dc.subject.other Performance assessment en
dc.subject.other Point temperature en
dc.subject.other Positive effects en
dc.subject.other Power cycle en
dc.subject.other Power systems en
dc.subject.other Rankine en
dc.subject.other Regenerative effects en
dc.subject.other Regenerative heat exchanger en
dc.subject.other Reverse osmosis desalination en
dc.subject.other Small scale en
dc.subject.other Thermodynamic perfection en
dc.subject.other Topological methods en
dc.subject.other Working fluid en
dc.subject.other Desalination en
dc.subject.other Energy conversion en
dc.subject.other Energy efficiency en
dc.subject.other Evaporators en
dc.subject.other Exergy en
dc.subject.other Fluids en
dc.subject.other Geothermal energy en
dc.subject.other Graphic methods en
dc.subject.other Profitability en
dc.subject.other Regenerators en
dc.subject.other Reverse osmosis en
dc.subject.other Thermodynamics en
dc.subject.other Turbines en
dc.subject.other Water filtration en
dc.subject.other Heat engines en
dc.subject.other desalination en
dc.subject.other energy efficiency en
dc.subject.other energy flow en
dc.subject.other engine en
dc.subject.other exergy en
dc.subject.other osmosis en
dc.subject.other performance assessment en
dc.subject.other thermodynamics en
dc.subject.other turbine en
dc.title Exergy analysis of micro-organic Rankine power cycles for a small scale solar driven reverse osmosis desalination system en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.apenergy.2009.07.011 en
heal.publicationDate 2010 en
heal.abstract Exergy analysis of micro-organic Rankine heat engines is performed to identify the most suitable engine for driving a small scale reverse osmosis desalination system. Three modified engines derived from simple Rankine engine using regeneration (incorporation of regenerator or feedliquid heaters) are analyzed through a novel approach, called exergy-topological method based on the combination of exergy flow graphs, exergy loss graphs, and thermoeconomic graphs. For the investigations, three working fluids are considered: R134a, R245fa and R600. The incorporated devices produce different results with different fluids. Exergy destruction throughout the systems operating with R134a was quantified and illustrated using exergy diagrams. The sites with greater exergy destruction include turbine, evaporator and feedliquid heaters. The most critical components include evaporator, turbine and mixing units. A regenerative heat exchanger has positive effects only when the engine operates with dry fluids; feedliquid heaters improve the degree of thermodynamic perfection of the system but lead to loss in exergetic efficiency. Although, different modifications produce better energy conversion and less exergy destroyed, the improvements are not significant enough and subsequent modifications of the simple Rankine engine cannot be considered as economically profitable for heat source temperature below 100 °C. As illustration, a regenerator increases the system's energy efficiency by 7%, the degree of thermodynamic perfection by 3.5% while the exergetic efficiency is unchanged in comparison with the simple Rankine cycle, with R600 as working fluid. The impacts of heat source temperature and pinch point temperature difference on engine's performance are also examined. Finally, results demonstrate that energy analysis combined with the mathematical graph theory is a powerful tool in performance assessments of Rankine based power systems and permits meaningful comparison of different regenerative effects based on their contribution to systems improvements. © 2009 Elsevier Ltd. All rights reserved. en
heal.journalName Applied Energy en
dc.identifier.issue 4 en
dc.identifier.volume 87 en
dc.identifier.doi 10.1016/j.apenergy.2009.07.011 en
dc.identifier.spage 1295 en
dc.identifier.epage 1306 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναζήτηση DSpace


Σύνθετη Αναζήτηση

Αναζήτηση

Ο Λογαριασμός μου

Στατιστικές