HEAL DSpace

Wavelet neural networks for modelling high pressure inactivation kinetics of Listeria monocytogenes in UHT whole milk

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Amina, M en
dc.contributor.author Panagou, EZ en
dc.contributor.author Kodogiannis, VS en
dc.contributor.author Nychas, G-JE en
dc.date.accessioned 2014-06-06T06:50:46Z
dc.date.available 2014-06-06T06:50:46Z
dc.date.issued 2010 en
dc.identifier.issn 01697439 en
dc.identifier.uri http://dx.doi.org/10.1016/j.chemolab.2010.07.004 en
dc.identifier.uri http://62.217.125.90/xmlui/handle/123456789/5154
dc.subject High pressure treatment en
dc.subject Listeria monocytogenes en
dc.subject Milk en
dc.subject Neural networks en
dc.subject Partial least squares regression en
dc.subject Predictive modelling en
dc.subject Wavelet networks en
dc.subject.other article en
dc.subject.other artificial neural network en
dc.subject.other bacterial count en
dc.subject.other bacterial kinetics en
dc.subject.other bacterial survival en
dc.subject.other bactericidal activity en
dc.subject.other bacterium contamination en
dc.subject.other controlled study en
dc.subject.other environmental temperature en
dc.subject.other food analysis en
dc.subject.other food contamination en
dc.subject.other food microbiotechnology en
dc.subject.other high temperature en
dc.subject.other hydrostatic pressure en
dc.subject.other Listeria monocytogenes en
dc.subject.other milk en
dc.subject.other nonhuman en
dc.subject.other nonlinear system en
dc.subject.other partial least squares regression en
dc.subject.other prediction en
dc.subject.other pressure measurement en
dc.subject.other priority journal en
dc.subject.other process development en
dc.subject.other process model en
dc.subject.other process optimization en
dc.subject.other statistical model en
dc.subject.other survival rate en
dc.subject.other validation process en
dc.title Wavelet neural networks for modelling high pressure inactivation kinetics of Listeria monocytogenes in UHT whole milk en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.chemolab.2010.07.004 en
heal.publicationDate 2010 en
heal.abstract The aim of the present work was to investigate the applicability of a Wavelet Neural Network to describe the inactivation pattern of Listeria monocytogenes by high hydrostatic pressure in ultra high temperature (UHT) whole milk, and evaluate its performance against models used in predictive microbiology such as the re-parameterized Gompertz and modified Weibull equations. A comparative study with linear partial least squares regression (PLS-R) as well as neural network (NN) models demonstrated on the same dataset has been also considered. Milk was artificially inoculated with an initial population of the pathogen of ca. 107CFU/ml and exposed to a range of high pressures (350, 450, 550, 600MPa) for up to 40min at ambient temperature (ca. 25°C). Typical survival curves were obtained including a shoulder, a log-linear and a tailing phase. Increasing the magnitude of the applied pressure resulted in increasing levels of inactivation. Modelling approaches provided good fit to experimental training data as inferred by the low values of the root mean squared error (RMSE) and the high values of regression coefficient (R2). Models were validated at 400 and 500MPa with independent experimental data. First or second order polynomial models were employed to relate the inactivation parameters to pressure, whereas the wavelet network as well as the PLS and NN models were utilised as a one-step modelling approach. The prediction performance of the proposed learning-based network was better at both validation pressures. The development of accurate models to describe the survival curves of micro-organisms in high pressure treatment would be very important to the food industry for process optimisation, food safety and would eventually expand the applicability of this non-thermal process. © 2010 Elsevier B.V. en
heal.journalName Chemometrics and Intelligent Laboratory Systems en
dc.identifier.issue 2 en
dc.identifier.volume 103 en
dc.identifier.doi 10.1016/j.chemolab.2010.07.004 en
dc.identifier.spage 170 en
dc.identifier.epage 183 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναζήτηση DSpace


Σύνθετη Αναζήτηση

Αναζήτηση

Ο Λογαριασμός μου

Στατιστικές