HEAL DSpace

Rational rotation-minimizing frames on polynomial space curves of arbitrary degree

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Farouki, RT en
dc.contributor.author Sakkalis, T en
dc.date.accessioned 2014-06-06T06:50:40Z
dc.date.available 2014-06-06T06:50:40Z
dc.date.issued 2010 en
dc.identifier.issn 07477171 en
dc.identifier.uri http://dx.doi.org/10.1016/j.jsc.2010.03.004 en
dc.identifier.uri http://62.217.125.90/xmlui/handle/123456789/5112
dc.subject Hopf map en
dc.subject Polynomial identities en
dc.subject Pythagorean-hodograph curves en
dc.subject Quaternions en
dc.subject Rotation-minimizing frames en
dc.subject Spatial motion planning en
dc.title Rational rotation-minimizing frames on polynomial space curves of arbitrary degree en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.jsc.2010.03.004 en
heal.publicationDate 2010 en
heal.abstract A rotation-minimizing adapted frame on a space curve r(t) is an orthonormal basis (f1,f2,f3) for R3 such that f1 is coincident with the curve tangent t=r'/|r'| at each point and the normal-plane vectors f2, f3 exhibit no instantaneous rotation about f1. Such frames are of interest in applications such as spatial path planning, computer animation, robotics, and swept surface constructions. Polynomial curves with rational rotation-minimizing frames (RRMF curves) are necessarily Pythagorean-hodograph (PH) curves-since only the PH curves possess rational unit tangents-and they may be characterized by the fact that a rational expression in the four polynomials u(t), v(t), p(t), q(t) that define the quaternion or Hopf map form of spatial PH curves can be written in terms of just two polynomials a(t), b(t). As a generalization of prior characterizations for RRMF cubics and quintics, a sufficient and necessary condition for a spatial PH curve of arbitrary degree to be an RRMF curve is derived herein for the generic case satisfying u2(t)+v2(t)+p2(t)+q2(t)=a 2(t)+b2(t). This RRMF condition amounts to a divisibility property for certain polynomials defined in terms of u(t), v(t), p(t), q(t) and their derivatives. © 2010 Elsevier Ltd. en
heal.journalName Journal of Symbolic Computation en
dc.identifier.issue 8 en
dc.identifier.volume 45 en
dc.identifier.doi 10.1016/j.jsc.2010.03.004 en
dc.identifier.spage 844 en
dc.identifier.epage 856 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναζήτηση DSpace


Σύνθετη Αναζήτηση

Αναζήτηση

Ο Λογαριασμός μου

Στατιστικές