HEAL DSpace

Rapid qualitative and quantitative detection of beef fillets spoilage based on Fourier transform infrared spectroscopy data and artificial neural networks

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Argyri, AA en
dc.contributor.author Panagou, EZ en
dc.contributor.author Tarantilis, PA en
dc.contributor.author Polysiou, M en
dc.contributor.author Nychas, G-JE en
dc.date.accessioned 2014-06-06T06:50:40Z
dc.date.available 2014-06-06T06:50:40Z
dc.date.issued 2010 en
dc.identifier.issn 09254005 en
dc.identifier.uri http://dx.doi.org/10.1016/j.snb.2009.11.052 en
dc.identifier.uri http://62.217.125.90/xmlui/handle/123456789/5111
dc.subject Aerobic storage en
dc.subject Artificial neural networks en
dc.subject Beef fillets en
dc.subject FTIR en
dc.subject Machine learning en
dc.subject Meat spoilage en
dc.subject.other Aerobic condition en
dc.subject.other Artificial Neural Network en
dc.subject.other Fourier transform infrared en
dc.subject.other FT-IR spectrum en
dc.subject.other FTIR en
dc.subject.other FTIR spectroscopy en
dc.subject.other Good correlations en
dc.subject.other Graphical plots en
dc.subject.other Machine-learning en
dc.subject.other Meat samples en
dc.subject.other Meat spoilage en
dc.subject.other Microbial count en
dc.subject.other Microbial loads en
dc.subject.other Multilayer perceptron neural networks en
dc.subject.other Quantitative detection en
dc.subject.other Rapid assessment en
dc.subject.other Sensory evaluation en
dc.subject.other Spectral data en
dc.subject.other Standard error of prediction en
dc.subject.other Statistical indices en
dc.subject.other Total viable counts en
dc.subject.other Fourier transform infrared spectroscopy en
dc.subject.other Fourier transforms en
dc.subject.other Learning systems en
dc.subject.other Meats en
dc.subject.other Spoilage en
dc.subject.other Neural networks en
dc.title Rapid qualitative and quantitative detection of beef fillets spoilage based on Fourier transform infrared spectroscopy data and artificial neural networks en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.snb.2009.11.052 en
heal.publicationDate 2010 en
heal.abstract A machine learning strategy in the form of a multilayer perceptron (MLP) neural network was employed to correlate Fourier transform infrared (FTIR) spectral data with beef spoilage during aerobic storage at chill and abuse temperatures. Fresh beef fillets were packaged under aerobic conditions and left to spoil at 0, 5, 10, 15, and 20 °C for up to 350 h. FTIR spectra were collected directly from the surface of meat samples, whereas total viable counts of bacteria were obtained with standard plating methods. Sensory evaluation was performed during storage and samples were attributed into three quality classes namely fresh, semi-fresh, and spoiled. A neural network was designed to classify beef samples to one of the three quality classes based on the biochemical profile provided by the FTIR spectra, and in parallel to predict the microbial load (as total viable counts) on meat surface. The results obtained demonstrated that the developed neural network was able to classify with high accuracy the beef samples in the corresponding quality class using their FTIR spectra. The network was able to classify correctly 22 out of 24 fresh samples (91.7%), 32 out of 34 spoiled samples (94.1%), and 13 out of 16 semi-fresh samples (81.2%). No fresh sample was misclassified as spoiled and vice versa. The performance of the network in the prediction of microbial counts was based on graphical plots and statistical indices (bias and accuracy factors, standard error of prediction, mean relative and mean absolute percentage residuals). Results demonstrated good correlation of microbial load on beef surface with spectral data. The results of this work indicated that the biochemical fingerprints during beef spoilage obtained by FTIR spectroscopy in combination with the appropriate machine learning strategy have significant potential for rapid assessment of meat spoilage. © 2009 Elsevier B.V. All rights reserved. en
heal.journalName Sensors and Actuators, B: Chemical en
dc.identifier.issue 1 en
dc.identifier.volume 145 en
dc.identifier.doi 10.1016/j.snb.2009.11.052 en
dc.identifier.spage 146 en
dc.identifier.epage 154 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναζήτηση DSpace


Σύνθετη Αναζήτηση

Αναζήτηση

Ο Λογαριασμός μου

Στατιστικές