dc.contributor.author | Lonquety, M | en |
dc.contributor.author | Chomilier, J | en |
dc.contributor.author | Papandreou, N | en |
dc.contributor.author | Lacroix, Z | en |
dc.date.accessioned | 2014-06-06T06:50:39Z | |
dc.date.available | 2014-06-06T06:50:39Z | |
dc.date.issued | 2010 | en |
dc.identifier.issn | 15362310 | en |
dc.identifier.uri | http://dx.doi.org/10.1089/omi.2009.0022 | en |
dc.identifier.uri | http://62.217.125.90/xmlui/handle/123456789/5103 | |
dc.subject.other | ab initio calculation | en |
dc.subject.other | algorithm | en |
dc.subject.other | article | en |
dc.subject.other | computer simulation | en |
dc.subject.other | intermethod comparison | en |
dc.subject.other | methodology | en |
dc.subject.other | Monte Carlo method | en |
dc.subject.other | most interacting residue algorithm | en |
dc.subject.other | point mutation | en |
dc.subject.other | position effect | en |
dc.subject.other | priority journal | en |
dc.subject.other | protein analysis | en |
dc.subject.other | protein database | en |
dc.subject.other | protein folding | en |
dc.subject.other | protein stability | en |
dc.subject.other | protein structure | en |
dc.subject.other | protein tertiary structure | en |
dc.subject.other | structure analysis | en |
dc.subject.other | tightened end fragment | en |
dc.subject.other | Algorithms | en |
dc.subject.other | Avian Sarcoma Viruses | en |
dc.subject.other | Integrases | en |
dc.subject.other | Monte Carlo Method | en |
dc.subject.other | Point Mutation | en |
dc.subject.other | Protein Folding | en |
dc.subject.other | Protein Stability | en |
dc.subject.other | Proteins | en |
dc.title | Prediction of stability upon point mutation in the context of the folding nucleus | en |
heal.type | journalArticle | en |
heal.identifier.primary | 10.1089/omi.2009.0022 | en |
heal.publicationDate | 2010 | en |
heal.abstract | Proteins come in all shapes and sizes. Although it is possible to predict with reasonable success their structure from their sequence, the process of folding a chain of amino acids into its tertiary structure remains partially understood. This article addresses several characteristics pertaining to protein folding. The development of the Most Interacting Residues (MIR) algorithm, which dynamically simulates the early folding events, permits a reasonable ab initio prediction of the deeply buried critical residues involved in the formation of the protein core. The analysis of MIR positions with respect to protein 3D topology, in particular, to fragments called Tightened End Fragments (TEF) that might be good candidate for autonomous folding units, suggests that they are also essential for defining core stability. To validate this hypothesis, this study measures the sensitivity of MIR residues to point mutations. It is performed on a set of 385 proteins from a database that contains stability data calculated with five different algorithms. Tools have been developed to help the analysis and a consensus of the five methods is proposed. It results that positions predicted both as a MIR and a minimum of stability for the consensus are good candidates for the folding nucleus, and consequently their mutations may be hazardous. © 2010, Mary Ann Liebert, Inc. | en |
heal.journalName | OMICS A Journal of Integrative Biology | en |
dc.identifier.issue | 2 | en |
dc.identifier.volume | 14 | en |
dc.identifier.doi | 10.1089/omi.2009.0022 | en |
dc.identifier.spage | 151 | en |
dc.identifier.epage | 156 | en |
Αρχεία | Μέγεθος | Μορφότυπο | Προβολή |
---|---|---|---|
Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο. |