dc.contributor.author |
Vaserstein, L |
en |
dc.contributor.author |
Sakkalis, T |
en |
dc.contributor.author |
Frisch, S |
en |
dc.date.accessioned |
2014-06-06T06:50:39Z |
|
dc.date.available |
2014-06-06T06:50:39Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
17930421 |
en |
dc.identifier.uri |
http://dx.doi.org/10.1142/S1793042110003496 |
en |
dc.identifier.uri |
http://62.217.125.90/xmlui/handle/123456789/5101 |
|
dc.subject |
fields |
en |
dc.subject |
orthogonal transformations |
en |
dc.subject |
polynomial parametrization |
en |
dc.subject |
polynomial rings |
en |
dc.subject |
Pythagorean tuples |
en |
dc.title |
Polynomial parametrization of pythagorean tuples |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1142/S1793042110003496 |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
A Pythagorean (k, l)-tuple over a commutative ring A is a vector x = (x i) ∈ A k+l, where k, l ∈ , k < l which satisfies σ i = 1 k x i 2 = σ i= 1 l k+i. In this paper, a polynomial parametrization of Pythagorean (k, l)-tuples over the ring F[t] is given, for l < 2. In the case where l = 1, solutions of the above equation are provided for k = 2, 3, 4, 5, and 9. © 2010 World Scientific Publishing Company. |
en |
heal.journalName |
International Journal of Number Theory |
en |
dc.identifier.issue |
6 |
en |
dc.identifier.volume |
6 |
en |
dc.identifier.doi |
10.1142/S1793042110003496 |
en |
dc.identifier.spage |
1261 |
en |
dc.identifier.epage |
1272 |
en |