HEAL DSpace

Plant virus identification based on neural networks with evolutionary preprocessing

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Glezakos, TJ en
dc.contributor.author Moschopoulou, G en
dc.contributor.author Tsiligiridis, TA en
dc.contributor.author Kintzios, S en
dc.contributor.author Yialouris, CP en
dc.date.accessioned 2014-06-06T06:50:38Z
dc.date.available 2014-06-06T06:50:38Z
dc.date.issued 2010 en
dc.identifier.issn 01681699 en
dc.identifier.uri http://dx.doi.org/10.1016/j.compag.2009.09.007 en
dc.identifier.uri http://62.217.125.90/xmlui/handle/123456789/5099
dc.subject Artificial Neural Networks (ANNs) en
dc.subject Bioelectric Recognition Assay (BERA) en
dc.subject Data mining en
dc.subject Feature extraction en
dc.subject Genetic algorithms (GAs) en
dc.subject Machine learning en
dc.subject Plant virus identification en
dc.subject Preprocessing techniques en
dc.subject Time-series analysis en
dc.subject.other Artificial neural networks en
dc.subject.other Bioelectric Recognition Assay (BERA) en
dc.subject.other Bioelectric recognition assays en
dc.subject.other Machine-learning en
dc.subject.other Plant virus en
dc.subject.other Preprocessing techniques en
dc.subject.other Biosensors en
dc.subject.other Computer viruses en
dc.subject.other Feature extraction en
dc.subject.other Genetic algorithms en
dc.subject.other Harmonic analysis en
dc.subject.other Learning algorithms en
dc.subject.other Learning systems en
dc.subject.other Time series analysis en
dc.subject.other Viruses en
dc.subject.other Multilayer neural networks en
dc.subject.other agricultural technology en
dc.subject.other artificial neural network en
dc.subject.other data mining en
dc.subject.other data set en
dc.subject.other genetic algorithm en
dc.subject.other identification method en
dc.subject.other meta-analysis en
dc.subject.other time series analysis en
dc.subject.other virus en
dc.title Plant virus identification based on neural networks with evolutionary preprocessing en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.compag.2009.09.007 en
heal.publicationDate 2010 en
heal.abstract In this work, genetic algorithms and multilayer neural networks are applied to plant virus identification. The initial data set is derived via a well known prototype method, which uses specially designed biosensors to monitor the virus reactions. Several techniques have been introduced for preprocessing the plant virus waves. They include segmentation along the time axis for fast response, nonlinear normalization to emphasize significant information, averaging samples of the plant virus waves to suppress noise effects, reduction in the number of samples to realize a more compact network, etc. Given the features of the acquired virus time-series signals of the problem under study, an evolutionary method is proposed in order to produce meta-data from the original time-series initial information, reduce the dimensionality of the input data space, and to eliminate the noise inherent in the initial raw information. A genetic algorithm is employed so as to smooth out the initial information while, the so produced meta-data sets are used in the training and testing of the applied neural network, producing fitter training data. The method is tested against some of the most commonly used classifiers in machine learning via cross-validation and proved its potential towards assisting virus identification. © 2009 Elsevier B.V. All rights reserved. en
heal.journalName Computers and Electronics in Agriculture en
dc.identifier.issue 2 en
dc.identifier.volume 70 en
dc.identifier.doi 10.1016/j.compag.2009.09.007 en
dc.identifier.spage 263 en
dc.identifier.epage 275 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναζήτηση DSpace


Σύνθετη Αναζήτηση

Αναζήτηση

Ο Λογαριασμός μου

Στατιστικές