dc.contributor.author | Pontikakos, CM | en |
dc.contributor.author | Tsiligiridis, TA | en |
dc.contributor.author | Drougka, ME | en |
dc.date.accessioned | 2014-06-06T06:50:33Z | |
dc.date.available | 2014-06-06T06:50:33Z | |
dc.date.issued | 2010 | en |
dc.identifier.issn | 01681699 | en |
dc.identifier.uri | http://dx.doi.org/10.1016/j.compag.2009.07.013 | en |
dc.identifier.uri | http://62.217.125.90/xmlui/handle/123456789/5067 | |
dc.subject | Expert system | en |
dc.subject | Geographical Information System | en |
dc.subject | Location-aware system | en |
dc.subject | Olive fruit fly | en |
dc.subject | Precision Farming | en |
dc.subject.other | Design issues | en |
dc.subject.other | Environmental-friendly | en |
dc.subject.other | Food safety | en |
dc.subject.other | Fruit flies | en |
dc.subject.other | Geographical Information System | en |
dc.subject.other | Geographical information systems | en |
dc.subject.other | Ground control | en |
dc.subject.other | Local climate | en |
dc.subject.other | Location aware system | en |
dc.subject.other | Location awareness | en |
dc.subject.other | Location-aware | en |
dc.subject.other | Location-sensing | en |
dc.subject.other | Meteorological condition | en |
dc.subject.other | Middleware architecture | en |
dc.subject.other | Operational capabilities | en |
dc.subject.other | Precision farming | en |
dc.subject.other | Public health | en |
dc.subject.other | Safe distance | en |
dc.subject.other | Spraying process | en |
dc.subject.other | Wireless internet | en |
dc.subject.other | Agriculture | en |
dc.subject.other | Concurrent engineering | en |
dc.subject.other | Geographic information systems | en |
dc.subject.other | Health | en |
dc.subject.other | Health risks | en |
dc.subject.other | Information systems | en |
dc.subject.other | Insecticides | en |
dc.subject.other | Job analysis | en |
dc.subject.other | Lithium alloys | en |
dc.subject.other | Middleware | en |
dc.subject.other | Pest control | en |
dc.subject.other | Rapid prototyping | en |
dc.subject.other | Rock mechanics | en |
dc.subject.other | Wireless telecommunication systems | en |
dc.subject.other | Expert systems | en |
dc.subject.other | bait | en |
dc.subject.other | climate conditions | en |
dc.subject.other | decision making | en |
dc.subject.other | evergreen tree | en |
dc.subject.other | expert system | en |
dc.subject.other | fly | en |
dc.subject.other | GIS | en |
dc.subject.other | insecticide | en |
dc.subject.other | pesticide residue | en |
dc.subject.other | precision agriculture | en |
dc.subject.other | spatiotemporal analysis | en |
dc.subject.other | Bactrocera oleae | en |
dc.title | Location-aware system for olive fruit fly spray control | en |
heal.type | journalArticle | en |
heal.identifier.primary | 10.1016/j.compag.2009.07.013 | en |
heal.publicationDate | 2010 | en |
heal.abstract | Location awareness is essential for many Precision Farming (PF) tasks with strong spatiotemporal, environmental, public health and food safety characteristics. Nevertheless, its role is much more crucial in PF tasks with efficacy depending mainly on local climate conditions and the collaboration of users. A PF task with the aforementioned characteristics is the insecticide-bait ground spraying against olive fruit fly, the most serious pest on olive cultivations. It requires location awareness, so as to be more efficient, friendly for the environment and the domestic areas, and ensure olive products with low insecticide residues. This research proposes an innovative, integrated, Location-Aware System (LAS) suitable for the ground control of the olive fruit fly. The developed system enables rapid prototyping of Location-Aware (LA) services in an intelligent PF environment combining location sensing technologies with wireless Internet, Geographical Information Systems (GIS), and Expert Systems (ES). We focus on the functional and operational capabilities of the middleware architecture, on the design issues of the developed GIS, ES, and LA modules, as well as, on the factors and infrastructure that must be considered during the spraying process. Based on this framework we developed specific LA services, such as finding the area to be sprayed, estimating the amount of the spraying solution required, canceling the spraying process, etc. These services aim in a more efficient and environmental friendly treatment. To validate the LAS a moderate-scale experiment is performed showing that the proposed system is functional and operational. LAS consult effectively the tractor attendants on how to spray, by means of reducing spraying failures and minimizing the decisions that must be taken during spraying process. Preliminary results report that with LAS no over sprayings occur, sprayings are based on infestation risk, cultivation characteristics, and meteorological conditions. Finally, a safe distance from biological cultivations, environmental protected and domestic areas is kept, avoiding pollution of these areas with insecticide residues. © 2009 Elsevier B.V. All rights reserved. | en |
heal.journalName | Computers and Electronics in Agriculture | en |
dc.identifier.issue | 2 | en |
dc.identifier.volume | 70 | en |
dc.identifier.doi | 10.1016/j.compag.2009.07.013 | en |
dc.identifier.spage | 355 | en |
dc.identifier.epage | 368 | en |
Αρχεία | Μέγεθος | Μορφότυπο | Προβολή |
---|---|---|---|
Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο. |