HEAL DSpace

A comparison of spectral angle mapper and artificial neural network classifiers combined with landsat TM imagery analysis for obtaining burnt area mapping

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Petropoulos, GP en
dc.contributor.author Vadrevu, KP en
dc.contributor.author Xanthopoulos, G en
dc.contributor.author Karantounias, G en
dc.contributor.author Scholze, M en
dc.date.accessioned 2014-06-06T06:49:58Z
dc.date.available 2014-06-06T06:49:58Z
dc.date.issued 2010 en
dc.identifier.issn 14248220 en
dc.identifier.uri http://dx.doi.org/10.3390/s100301967 en
dc.identifier.uri http://62.217.125.90/xmlui/handle/123456789/4927
dc.subject Artificial neural networks en
dc.subject Burnt area mapping en
dc.subject Greek forest fires 2007 en
dc.subject Landsat TM en
dc.subject Spectral angle mapper en
dc.subject.other Artificial neural network classifiers en
dc.subject.other Burnt areas en
dc.subject.other Classification accuracy en
dc.subject.other Forest fires en
dc.subject.other LANDSAT TM en
dc.subject.other Overall accuracies en
dc.subject.other Satellite remote sensing en
dc.subject.other Spectral angle mappers en
dc.subject.other Algorithms en
dc.subject.other Deforestation en
dc.subject.other Estimation en
dc.subject.other Fires en
dc.subject.other Maps en
dc.subject.other Neural networks en
dc.subject.other Satellite imagery en
dc.subject.other Photomapping en
dc.subject.other algorithm en
dc.subject.other article en
dc.subject.other artificial neural network en
dc.subject.other audiovisual equipment en
dc.subject.other comparative study en
dc.subject.other fire en
dc.subject.other geographic information system en
dc.subject.other Greece en
dc.subject.other image processing en
dc.subject.other methodology en
dc.subject.other remote sensing en
dc.subject.other telecommunication en
dc.subject.other tree en
dc.subject.other Algorithms en
dc.subject.other Fires en
dc.subject.other Geographic Information Systems en
dc.subject.other Greece en
dc.subject.other Image Processing, Computer-Assisted en
dc.subject.other Maps as Topic en
dc.subject.other Neural Networks (Computer) en
dc.subject.other Remote Sensing Technology en
dc.subject.other Satellite Communications en
dc.subject.other Trees en
dc.title A comparison of spectral angle mapper and artificial neural network classifiers combined with landsat TM imagery analysis for obtaining burnt area mapping en
heal.type journalArticle en
heal.identifier.primary 10.3390/s100301967 en
heal.publicationDate 2010 en
heal.abstract Satellite remote sensing, with its unique synoptic coverage capabilities, can provide accurate and immediately valuable information on fire analysis and post-fire assessment, including estimation of burnt areas. In this study the potential for burnt area mapping of the combined use of Artificial Neural Network (ANN) and Spectral Angle Mapper (SAM) classifiers with Landsat TM satellite imagery was evaluated in a Mediterranean setting. As a case study one of the most catastrophic forest fires, which occurred near the capital of Greece during the summer of 2007, was used. The accuracy of the two algorithms in delineating the burnt area from the Landsat TM imagery, acquired shortly after the fire suppression, was determined by the classification accuracy results of the produced thematic maps. In addition, the derived burnt area estimates from the two classifiers were compared with independent estimates available for the study region, obtained from the analysis of higher spatial resolution satellite data. In terms of the overall classification accuracy, ANN outperformed (overall accuracy 90.29%, Kappa coefficient 0.878) the SAM classifier (overall accuracy 83.82%, Kappa coefficient 0.795). Total burnt area estimates from the two classifiers were found also to be in close agreement with the other available estimates for the study region, with a mean absolute percentage difference of ~1% for ANN and ~6.5% for SAM. The study demonstrates the potential of the examined here algorithms in detecting burnt areas in a typical Mediterranean setting. © 2010 by the authors. en
heal.journalName Sensors en
dc.identifier.issue 3 en
dc.identifier.volume 10 en
dc.identifier.doi 10.3390/s100301967 en
dc.identifier.spage 1967 en
dc.identifier.epage 1985 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναζήτηση DSpace


Σύνθετη Αναζήτηση

Αναζήτηση

Ο Λογαριασμός μου

Στατιστικές