dc.contributor.author |
Missirlis, D |
en |
dc.contributor.author |
Donnerhack, S |
en |
dc.contributor.author |
Seite, O |
en |
dc.contributor.author |
Albanakis, C |
en |
dc.contributor.author |
Sideridis, A |
en |
dc.contributor.author |
Yakinthos, K |
en |
dc.contributor.author |
Goulas, A |
en |
dc.date.accessioned |
2014-06-06T06:49:57Z |
|
dc.date.available |
2014-06-06T06:49:57Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.uri |
http://dx.doi.org/10.1016/j.applthermaleng.2010.02.021 |
en |
dc.identifier.uri |
http://62.217.125.90/xmlui/handle/123456789/4915 |
|
dc.subject |
Experimental Data |
en |
dc.subject |
Experimental Measurement |
en |
dc.subject |
Heat Exchanger |
en |
dc.subject |
Heat Transfer |
en |
dc.subject |
Heat Transfer Coefficient |
en |
dc.subject |
Porous Media |
en |
dc.subject |
Porous Medium |
en |
dc.subject |
Pressure Drop |
en |
dc.title |
Numerical development of a heat transfer and pressure drop porosity model for a heat exchanger for aero engine applications |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.applthermaleng.2010.02.021 |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
Heat exchangers are used in various applications. In a typical CFD approach, where it is necessary to model the flow in a device with a heat exchanger, a first step can be the construction of a very detailed mesh modeling each flow passage inside the device. However, this approach can lead to very fine grids with high demands of CPU |
en |
heal.journalName |
Applied Thermal Engineering |
en |
dc.identifier.doi |
10.1016/j.applthermaleng.2010.02.021 |
en |