dc.contributor.author | Charitos, C | en |
dc.contributor.author | Papadoperakis, I | en |
dc.date.accessioned | 2014-06-06T06:49:56Z | |
dc.date.available | 2014-06-06T06:49:56Z | |
dc.date.issued | 2010 | en |
dc.identifier.uri | http://dx.doi.org/10.1093/qmath/haq027 | en |
dc.identifier.uri | http://62.217.125.90/xmlui/handle/123456789/4904 | |
dc.subject | Euclidean Space | en |
dc.subject | Hyperbolic Metric | en |
dc.subject | teichmuller space | en |
dc.subject | 3 dimensional | en |
dc.title | GENERALIZED TEICHMULLER SPACE OF NON-COMPACT 3-MANIFOLDS AND mOSTOW RIGIDITY | en |
heal.type | journalArticle | en |
heal.identifier.primary | 10.1093/qmath/haq027 | en |
heal.publicationDate | 2010 | en |
heal.abstract | Consider a 3$-$dimensional manifold $N$ obtained by gluing a finite number ofideal hyperbolic tetrahedra via isometries along their faces. By varying theisometry type of each tetrahedron but keeping fixed the gluing pattern wedefine a space $\mathcal{T}$ of complete hyperbolic metrics on $N$ with conesingularities along the edges of the tetrahedra. We prove that $\mathcal{T}$ ishomeomorphic | en |
heal.journalName | Quarterly Journal of Mathematics | en |
dc.identifier.doi | 10.1093/qmath/haq027 | en |
Αρχεία | Μέγεθος | Μορφότυπο | Προβολή |
---|---|---|---|
Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο. |