HEAL DSpace

Effect of fractionation and pyrolysis on fuel properties of poultry litter

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Singh, K en
dc.contributor.author Risse, LM en
dc.contributor.author Das, KC en
dc.contributor.author Worley, J en
dc.contributor.author Thompson, S en
dc.date.accessioned 2014-06-06T06:49:45Z
dc.date.available 2014-06-06T06:49:45Z
dc.date.issued 2010 en
dc.identifier.issn 10473289 en
dc.identifier.uri http://dx.doi.org/10.3155/1047-3289.60.7.875 en
dc.identifier.uri http://62.217.125.90/xmlui/handle/123456789/4765
dc.subject.other Arsenic content en
dc.subject.other Bio oil en
dc.subject.other Coarse fractions en
dc.subject.other Combined solution en
dc.subject.other Dense fraction en
dc.subject.other Energy productions en
dc.subject.other Fuel properties en
dc.subject.other Light phase en
dc.subject.other Low heating values en
dc.subject.other Moisture contents en
dc.subject.other Nitrate nitrogen en
dc.subject.other Nitrogen atmospheres en
dc.subject.other Poultry farms en
dc.subject.other Poultry litter en
dc.subject.other Pyrolysis process en
dc.subject.other Pyrolysis temperature en
dc.subject.other Screening process en
dc.subject.other Arsenic en
dc.subject.other Batch reactors en
dc.subject.other Calcium en
dc.subject.other Calorific value en
dc.subject.other Feedstocks en
dc.subject.other Heating en
dc.subject.other Mercury (metal) en
dc.subject.other Nitrogen en
dc.subject.other Nutrients en
dc.subject.other Sodium en
dc.subject.other Pyrolysis en
dc.subject.other fuel en
dc.subject.other nitrogen en
dc.subject.other oil en
dc.subject.other animal food en
dc.subject.other article en
dc.subject.other batch reactor en
dc.subject.other calorimetry en
dc.subject.other controlled study en
dc.subject.other density en
dc.subject.other farm animal en
dc.subject.other fractionation en
dc.subject.other heating en
dc.subject.other nonhuman en
dc.subject.other nutrient content en
dc.subject.other particle size en
dc.subject.other poultry en
dc.subject.other priority journal en
dc.subject.other pyrolysis en
dc.subject.other quality control en
dc.subject.other temperature en
dc.subject.other waste en
dc.subject.other Animals en
dc.subject.other Energy-Generating Resources en
dc.subject.other Environmental Monitoring en
dc.subject.other Environmental Pollutants en
dc.subject.other Environmental Pollution en
dc.subject.other Floors and Floorcoverings en
dc.subject.other Housing, Animal en
dc.subject.other Incineration en
dc.subject.other Pinus en
dc.subject.other Poultry en
dc.subject.other Refuse Disposal en
dc.subject.other Wood en
dc.title Effect of fractionation and pyrolysis on fuel properties of poultry litter en
heal.type journalArticle en
heal.identifier.primary 10.3155/1047-3289.60.7.875 en
heal.publicationDate 2010 en
heal.abstract Raw poultry litter has certain drawbacks for energy production such as high ash and moisture content, a corrosive nature, and low heating values. A combined solution to utilization of raw poultry litter may involve fractionation and pyrolysis. Fractionation divides poultry litter into a fine, nutrient-rich fraction and a coarse, carbon-dense fraction. Pyrolysis of the coarse fraction would remove the corrosive volatiles as bio-oil, leaving clean char. This paper presents the effect of fractionation and pyrolysis process parameters on the calorific value of char and on the characterization of bio-oil. Poultry litter samples collected from three commercial poultry farms were divided into 10 treatments that included 2 controls (raw poultry litter and its coarse fraction having particle size greater than 0.85 mm) and 8 other treatments that were combinations of three factors: type (raw poultry litter or its coarse fraction), heating rate (30 or 10 °C/min), and pyrolysis temperature (300 or 500 °C). After the screening process, the poultry litter samples were dried and pyrolyzed in a batch reactor under nitrogen atmosphere and char and condensate yields were recorded. The condensate was separated into three fractions on the basis of their density: heavy, medium, and light phase. Calorific value and proximate and nutrient analysis were performed for char, condensate, and feedstock. Results show that the char with the highest calorific value (17.39 ± 1.37 MJ/kg) was made from the coarse fraction at 300 °C, which captured 68.71 ± 9.37% of the feedstock energy. The char produced at 300 °C had 42 ± 11 mg/kg arsenic content but no mercury. Almost all of the Al, Ca, Fe, K, Mg, Na, and P remained in the char. The pyrolysis process reduced ammoniacal-nitrogen (NH 4-N) in char by 99.14 ± 0.47% and nitrate-nitrogen (NO 3-N) by 95.79 ± 5.45% at 500 °C. Copyright 2010 Air & Waste Management Association. en
heal.journalName Journal of the Air and Waste Management Association en
dc.identifier.issue 7 en
dc.identifier.volume 60 en
dc.identifier.doi 10.3155/1047-3289.60.7.875 en
dc.identifier.spage 875 en
dc.identifier.epage 883 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναζήτηση DSpace


Σύνθετη Αναζήτηση

Αναζήτηση

Ο Λογαριασμός μου

Στατιστικές