dc.contributor.author | Hunt, RW | en |
dc.contributor.author | Chinnasamy, S | en |
dc.contributor.author | Bhatnagar, A | en |
dc.contributor.author | Das, KC | en |
dc.date.accessioned | 2014-06-06T06:49:45Z | |
dc.date.available | 2014-06-06T06:49:45Z | |
dc.date.issued | 2010 | en |
dc.identifier.issn | 02732289 | en |
dc.identifier.uri | http://dx.doi.org/10.1007/s12010-010-9012-2 | en |
dc.identifier.uri | http://62.217.125.90/xmlui/handle/123456789/4763 | |
dc.subject | Auxins | en |
dc.subject | Bioenergy | en |
dc.subject | Biofuels | en |
dc.subject | Biomass | en |
dc.subject | Biostimulants | en |
dc.subject | Microalgae | en |
dc.subject | Phytohormones | en |
dc.subject.other | Auxins | en |
dc.subject.other | Bio-energy | en |
dc.subject.other | Biostimulants | en |
dc.subject.other | Micro-algae | en |
dc.subject.other | Phytohormones | en |
dc.subject.other | Algae | en |
dc.subject.other | Biofuels | en |
dc.subject.other | Biomass | en |
dc.subject.other | Chlorination | en |
dc.subject.other | Chlorine compounds | en |
dc.subject.other | Chlorophyll | en |
dc.subject.other | Cost reduction | en |
dc.subject.other | Fatty acids | en |
dc.subject.other | Metabolism | en |
dc.subject.other | Metabolites | en |
dc.subject.other | Methanol | en |
dc.subject.other | Microorganisms | en |
dc.subject.other | Organic acids | en |
dc.subject.other | Porphyrins | en |
dc.subject.other | Productivity | en |
dc.subject.other | Ecology | en |
dc.subject.other | 1 naphthylacetic acid | en |
dc.subject.other | 2 phenylacetic acid | en |
dc.subject.other | auxin | en |
dc.subject.other | biofuel | en |
dc.subject.other | chlorophyll | en |
dc.subject.other | ferric chloride | en |
dc.subject.other | gibberellic acid | en |
dc.subject.other | humic acid | en |
dc.subject.other | indolebutyric acid | en |
dc.subject.other | kelp extract | en |
dc.subject.other | methanol | en |
dc.subject.other | phytohormone | en |
dc.subject.other | plant extract | en |
dc.subject.other | polyamine | en |
dc.subject.other | putrescine | en |
dc.subject.other | spermidine | en |
dc.subject.other | thidiazuron | en |
dc.subject.other | trace element | en |
dc.subject.other | unclassified drug | en |
dc.subject.other | zeatin | en |
dc.subject.other | article | en |
dc.subject.other | biomass production | en |
dc.subject.other | Chlorella sorokiniana | en |
dc.subject.other | metabolite | en |
dc.subject.other | nonhuman | en |
dc.subject.other | plant growth | en |
dc.subject.other | Biomass | en |
dc.subject.other | Biotechnology | en |
dc.subject.other | Chlorella | en |
dc.subject.other | Industry | en |
dc.subject.other | Organic Chemicals | en |
dc.subject.other | Time Factors | en |
dc.subject.other | Chlorella sorokiniana | en |
dc.subject.other | Chlorophyta | en |
dc.subject.other | Paa | en |
dc.title | Effect of biochemical stimulants on biomass productivity and metabolite content of the microalga, Chlorella sorokiniana | en |
heal.type | journalArticle | en |
heal.identifier.primary | 10.1007/s12010-010-9012-2 | en |
heal.publicationDate | 2010 | en |
heal.abstract | The influence of 12 biochemical stimulants, namely 2-phenylacetic acid (PAA; 30 ppm), indole-3 butyric acid (IBA; 10 ppm), 1-naphthaleneacetic acid (NAA; 2.5, 5 and 10 ppm ), gibberellic acid (GA3, 10 ppm), zeatin (ZT; 0.002 ppm), thidiazuron (0.22 ppm), humic acid (20 ppm), kelp extract (250 ppm), methanol (500 ppm), ferric chloride (3.2 ppm ), putrescine (0.09 ppm), spermidine (1.5 ppm) were prescreened for their impact on growth and chlorophyll for the green alga-Chlorella sorokiniana. C. sorokiniana responded best to phytohormones in the auxin family, particularly NAA. Thereafter, two studies were conducted on combinations of phytohormones to compare blends from within the auxin family as well as against other families. These treatments were NAA5 ppm+PAA30 ppm, NAA2.5 ppm+PAA 15 ppm, NAA5 ppm+IBA10 ppm, NAA 5 ppm+GA310 ppm, NAA5 ppm+ZT1 ppm, and NAA5 ppm+GA310 ppm+ZT1 ppm. Combinations of NAA with other auxins did not have synergistic or antagonistic effects on the growth. However, combinations of compounds from different phytohormone families, such as NAA5 ppm+GA310 ppm+ZT1 ppm, dramatically increased the biomass productivity by 170% over the control followed by the treatments: NAA 5 ppm+GA310 ppm (138%), NAA 5 ppm+ZT1 ppm (136%), and NAA 5 ppm ( 133%). The effect of biochemical stimulants were also measured on metabolites such as chlorophyll, protein, and lipids in C. sorokiniana. Renewed interest in microalgae for biotechnology and biofuel applications may warrant the use of biochemical stimulants for cost reduction in large-scale cultivation through increased biomass productivity. © 2010 Springer Science+Business Media, LLC. | en |
heal.journalName | Applied Biochemistry and Biotechnology | en |
dc.identifier.issue | 8 | en |
dc.identifier.volume | 162 | en |
dc.identifier.doi | 10.1007/s12010-010-9012-2 | en |
dc.identifier.spage | 2400 | en |
dc.identifier.epage | 2414 | en |
Αρχεία | Μέγεθος | Μορφότυπο | Προβολή |
---|---|---|---|
Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο. |