dc.contributor.author |
Poulli, KI |
en |
dc.contributor.author |
Chantzos, NV |
en |
dc.contributor.author |
Mousdis, GA |
en |
dc.contributor.author |
Georgiou, CA |
en |
dc.date.accessioned |
2014-06-06T06:49:35Z |
|
dc.date.available |
2014-06-06T06:49:35Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
00218561 |
en |
dc.identifier.uri |
http://dx.doi.org/10.1021/jf902758d |
en |
dc.identifier.uri |
http://62.217.125.90/xmlui/handle/123456789/4673 |
|
dc.subject |
Corn oil |
en |
dc.subject |
Extra virgin olive oil |
en |
dc.subject |
Olive pomace oil |
en |
dc.subject |
Radical-scavenging activity |
en |
dc.subject |
Sesame oil |
en |
dc.subject |
Soybean oil |
en |
dc.subject |
Sunflower oil |
en |
dc.subject |
Synchronous fluorescence spectroscopy |
en |
dc.subject |
Thermal stress |
en |
dc.subject |
Totox |
en |
dc.subject.other |
corn oil |
en |
dc.subject.other |
olive oil |
en |
dc.subject.other |
sesame seed oil |
en |
dc.subject.other |
soybean oil |
en |
dc.subject.other |
sunflower oil |
en |
dc.subject.other |
vegetable oil |
en |
dc.subject.other |
article |
en |
dc.subject.other |
chemistry |
en |
dc.subject.other |
drug stability |
en |
dc.subject.other |
heat |
en |
dc.subject.other |
methodology |
en |
dc.subject.other |
spectrofluorometry |
en |
dc.subject.other |
Corn Oil |
en |
dc.subject.other |
Drug Stability |
en |
dc.subject.other |
Hot Temperature |
en |
dc.subject.other |
Plant Oils |
en |
dc.subject.other |
Sesame Oil |
en |
dc.subject.other |
Soybean Oil |
en |
dc.subject.other |
Spectrometry, Fluorescence |
en |
dc.subject.other |
Glycine max |
en |
dc.subject.other |
Helianthus |
en |
dc.subject.other |
Sesamum indicum |
en |
dc.subject.other |
Zea mays |
en |
dc.title |
Synchronous fluorescence spectroscopy: tool for monitoring thermally stressed edible oils |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1021/jf902758d |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
Total synchronous fluorescence spectra are proposed for monitoring edible oils during thermal stress. Synchronous fluorescence spectra obtained at an 80 nm wavelength interval combined with principal component analysis are suitable for classification of vegetable oil deterioration. Spectroscopic features in the range of 300-500 nm have been used for extra virgin olive, olive pomace, and sesame oil and the range of 320-520 nm has been used for corn, soybean, sunflower, and a commercial blend of oils. The score in the first two principal components explains 91.1% of the data matrix variance for extra virgin olive, sesame, and olive pomace oil and 89.3% for corn, soybean, sunflower, and the commercial blend of oils. The objective of this study is to develop a rapid method for the prediction of edible oil quality during thermal stress. Spectroscopic changes are indicative of oxidative deterioration as measured through wet chemistry methods: peroxide value, p-anisidine value, totox value, and radical-scavenging capacity. © 2009 American Chemical Society. |
en |
heal.journalName |
Journal of Agricultural and Food Chemistry |
en |
dc.identifier.issue |
18 |
en |
dc.identifier.volume |
57 |
en |
dc.identifier.doi |
10.1021/jf902758d |
en |
dc.identifier.spage |
8194 |
en |
dc.identifier.epage |
8201 |
en |