dc.contributor.author |
Thireou, T |
en |
dc.contributor.author |
Atlamazoglou, V |
en |
dc.contributor.author |
Papandreou, NA |
en |
dc.contributor.author |
Lonquety, M |
en |
dc.contributor.author |
Chomilier, J |
en |
dc.contributor.author |
Eliopoulos, E |
en |
dc.date.accessioned |
2014-06-06T06:49:30Z |
|
dc.date.available |
2014-06-06T06:49:30Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
09298665 |
en |
dc.identifier.uri |
http://dx.doi.org/10.2174/092986609789353673 |
en |
dc.identifier.uri |
http://62.217.125.90/xmlui/handle/123456789/4636 |
|
dc.subject |
Folding nucleus |
en |
dc.subject |
Hydrophobic core |
en |
dc.subject |
Lattice simulation |
en |
dc.subject |
Monte carlo method |
en |
dc.subject |
Protein folding |
en |
dc.subject.other |
ABP1 protein, S cerevisiae |
en |
dc.subject.other |
actin binding protein |
en |
dc.subject.other |
protein |
en |
dc.subject.other |
Saccharomyces cerevisiae protein |
en |
dc.subject.other |
algorithm |
en |
dc.subject.other |
amino acid sequence |
en |
dc.subject.other |
article |
en |
dc.subject.other |
chemistry |
en |
dc.subject.other |
metabolism |
en |
dc.subject.other |
Monte Carlo method |
en |
dc.subject.other |
protein conformation |
en |
dc.subject.other |
protein database |
en |
dc.subject.other |
protein folding |
en |
dc.subject.other |
reproducibility |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Amino Acid Sequence |
en |
dc.subject.other |
Databases, Protein |
en |
dc.subject.other |
Microfilament Proteins |
en |
dc.subject.other |
Monte Carlo Method |
en |
dc.subject.other |
Protein Conformation |
en |
dc.subject.other |
Protein Folding |
en |
dc.subject.other |
Proteins |
en |
dc.subject.other |
Reproducibility of Results |
en |
dc.subject.other |
Saccharomyces cerevisiae Proteins |
en |
dc.title |
Quantitative prediction of critical amino acid positions for protein folding |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.2174/092986609789353673 |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
The MIR algorithm provides an ab initio prediction of a protein's core residues. An improved version, the MIR2, is presented and validated on 3203 proteins from PDB. Structures are decomposed in Closed Loops, their limits constituting the observed core residues. They are predicted by MIR.2 with an accuracy approaching 80%. © 2009 Bentham Science Publishers Ltd. |
en |
heal.journalName |
Protein and Peptide Letters |
en |
dc.identifier.issue |
11 |
en |
dc.identifier.volume |
16 |
en |
dc.identifier.doi |
10.2174/092986609789353673 |
en |
dc.identifier.spage |
1342 |
en |
dc.identifier.epage |
1349 |
en |