dc.contributor.author |
Saaris, D |
en |
dc.contributor.author |
Kotseridis, Y |
en |
dc.contributor.author |
Linga, M |
en |
dc.contributor.author |
Galiotou-Panayotou, M |
en |
dc.contributor.author |
Papanikolaou, S |
en |
dc.date.accessioned |
2014-06-06T06:49:23Z |
|
dc.date.available |
2014-06-06T06:49:23Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
16180240 |
en |
dc.identifier.uri |
http://dx.doi.org/10.1002/elsc.200800059 |
en |
dc.identifier.uri |
http://62.217.125.90/xmlui/handle/123456789/4562 |
|
dc.subject |
Bio-ethanol |
en |
dc.subject |
Fungicide removal |
en |
dc.subject |
Wine volatiles |
en |
dc.subject.other |
Absolute values |
en |
dc.subject.other |
Biomass productions |
en |
dc.subject.other |
Conversion yield |
en |
dc.subject.other |
Ethanol production |
en |
dc.subject.other |
Flask culture |
en |
dc.subject.other |
Fungicide concentration |
en |
dc.subject.other |
Fusel alcohols |
en |
dc.subject.other |
Kinetic behavior |
en |
dc.subject.other |
Saccharomyces cerevisiae strains |
en |
dc.subject.other |
Statistically significant difference |
en |
dc.subject.other |
Volatile acids |
en |
dc.subject.other |
Volatile compounds |
en |
dc.subject.other |
Biochemical engineering |
en |
dc.subject.other |
Biochemistry |
en |
dc.subject.other |
Bioethanol |
en |
dc.subject.other |
Biomass |
en |
dc.subject.other |
Concentration (process) |
en |
dc.subject.other |
Esters |
en |
dc.subject.other |
Ethanol |
en |
dc.subject.other |
Sugar (sucrose) |
en |
dc.subject.other |
Sugars |
en |
dc.subject.other |
Synthesis (chemical) |
en |
dc.subject.other |
Wine |
en |
dc.subject.other |
Fungicides |
en |
dc.subject.other |
acetic acid derivative |
en |
dc.subject.other |
alcohol |
en |
dc.subject.other |
fungicide |
en |
dc.subject.other |
quinoxyfen |
en |
dc.subject.other |
sugar |
en |
dc.subject.other |
unclassified drug |
en |
dc.subject.other |
volatile agent |
en |
dc.subject.other |
biomass |
en |
dc.subject.other |
ethanol |
en |
dc.subject.other |
fungicide |
en |
dc.subject.other |
volatile organic compound |
en |
dc.subject.other |
alcohol production |
en |
dc.subject.other |
article |
en |
dc.subject.other |
biomass production |
en |
dc.subject.other |
biosynthesis |
en |
dc.subject.other |
concentration (parameters) |
en |
dc.subject.other |
controlled study |
en |
dc.subject.other |
culture medium |
en |
dc.subject.other |
enrichment culture |
en |
dc.subject.other |
fermentation |
en |
dc.subject.other |
fungal strain |
en |
dc.subject.other |
fungus growth |
en |
dc.subject.other |
fungus isolation |
en |
dc.subject.other |
grape must |
en |
dc.subject.other |
nonhuman |
en |
dc.subject.other |
pasteurization |
en |
dc.subject.other |
Saccharomyces cerevisiae |
en |
dc.subject.other |
Saccharomyces cerevisiae |
en |
dc.subject.other |
Vitaceae |
en |
dc.title |
Enhanced ethanol production, volatile compound biosynthesis and fungicide removal during growth of a newly isolated Saccharomyces cerevisiae strain on enriched pasteurized grape musts |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1002/elsc.200800059 |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
The kinetic behavior of a newly isolated Saccharomyces cerevisiae strain, grown on pasteurized grape musts enriched with industrial sugars, was studied after the addition of various concentrations 0.0 (reference), 0.4 and 2.4 mg/L of the fungicide quinoxyfen to the medium. Batch-flask cultures were carried out. Significant quantities of biomass (10.0±0.8 g/L) were produced regardless of quinoxyfen addition to the medium; therefore, the addition of the fungicide did not seriously inhibit biomass production. Ethanol was synthesized in very high quantities in all trials (highest concentrations 106.4-119.2 g/L). A slight decrease of ethanol production in terms of both absolute value and conversion yield of ethanol produced per sugar consumed was, however, observed when the quinoxyfen concentration was increased. The addition of quinoxyfen led to significantly lower ethylic ester levels, which also pertains to the acetates analyzed in this study. Fusel alcohol synthesis seemed to be activated when 0.4 mg/L quinoxyfen was added, but at 2.4 mg/L of added fungicide, no statistically significant differences were observed compared with the control trial. Volatile acid levels did not present a uniform trend in relation with the added fungicide. Finally, the fermentation was accompanied by a significant reduction of the fungicide concentration (79-82wt% fungicide removal). © Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
en |
heal.journalName |
Engineering in Life Sciences |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.volume |
9 |
en |
dc.identifier.doi |
10.1002/elsc.200800059 |
en |
dc.identifier.spage |
29 |
en |
dc.identifier.epage |
37 |
en |