dc.contributor.author |
Axarli, I |
en |
dc.contributor.author |
Dhavala, P |
en |
dc.contributor.author |
Papageorgiou, AC |
en |
dc.contributor.author |
Labrou, NE |
en |
dc.date.accessioned |
2014-06-06T06:49:18Z |
|
dc.date.available |
2014-06-06T06:49:18Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
02646021 |
en |
dc.identifier.uri |
http://dx.doi.org/10.1042/BJ20090224 |
en |
dc.identifier.uri |
http://62.217.125.90/xmlui/handle/123456789/4516 |
|
dc.subject |
Herbicide detoxification |
en |
dc.subject |
Induced-fit mechanism |
en |
dc.subject |
Kinetic mechanism |
en |
dc.subject |
Tau class glutathione transferase (GSTU) |
en |
dc.subject |
X-ray crystal structure |
en |
dc.subject.other |
glutathione |
en |
dc.subject.other |
glutathione transferase |
en |
dc.subject.other |
tau protein |
en |
dc.subject.other |
vegetable protein |
en |
dc.subject.other |
arginine |
en |
dc.subject.other |
tyrosine |
en |
dc.subject.other |
article |
en |
dc.subject.other |
chemistry |
en |
dc.subject.other |
classification |
en |
dc.subject.other |
comparative study |
en |
dc.subject.other |
crystallization |
en |
dc.subject.other |
genetics |
en |
dc.subject.other |
metabolism |
en |
dc.subject.other |
protein secondary structure |
en |
dc.subject.other |
protein tertiary structure |
en |
dc.subject.other |
site directed mutagenesis |
en |
dc.subject.other |
soybean |
en |
dc.subject.other |
X ray crystallography |
en |
dc.subject.other |
alpha helix |
en |
dc.subject.other |
amino terminal sequence |
en |
dc.subject.other |
binding site |
en |
dc.subject.other |
carboxy terminal sequence |
en |
dc.subject.other |
catalysis |
en |
dc.subject.other |
crystal structure |
en |
dc.subject.other |
enzyme analysis |
en |
dc.subject.other |
enzyme binding |
en |
dc.subject.other |
enzyme kinetics |
en |
dc.subject.other |
enzyme mechanism |
en |
dc.subject.other |
enzyme structure |
en |
dc.subject.other |
hydrogen bond |
en |
dc.subject.other |
nonhuman |
en |
dc.subject.other |
priority journal |
en |
dc.subject.other |
protein interaction |
en |
dc.subject.other |
Crystallization |
en |
dc.subject.other |
Crystallography, X-Ray |
en |
dc.subject.other |
Glutathione |
en |
dc.subject.other |
Glutathione Transferase |
en |
dc.subject.other |
Mutagenesis, Site-Directed |
en |
dc.subject.other |
Plant Proteins |
en |
dc.subject.other |
Protein Structure, Secondary |
en |
dc.subject.other |
Protein Structure, Tertiary |
en |
dc.subject.other |
Soybeans |
en |
dc.subject.other |
tau Proteins |
en |
dc.subject.other |
Herbicide detoxification |
en |
dc.subject.other |
Induced-fit mechanism |
en |
dc.subject.other |
Kinetic mechanism |
en |
dc.subject.other |
Tau class glutathione transferase (GSTU) |
en |
dc.subject.other |
X-ray crystal structure |
en |
dc.subject.other |
Binding energy |
en |
dc.subject.other |
Binding sites |
en |
dc.subject.other |
Detoxification |
en |
dc.subject.other |
Enzymes |
en |
dc.subject.other |
Herbicides |
en |
dc.subject.other |
Hydrogen |
en |
dc.subject.other |
Niobium |
en |
dc.subject.other |
Niobium compounds |
en |
dc.subject.other |
Substrates |
en |
dc.subject.other |
Weed control |
en |
dc.subject.other |
Crystal structure |
en |
dc.subject.other |
Glycine max |
en |
dc.title |
Crystal structure of glycine max glutathione transferase in complex with glutathione: Investigation of the mechanism operating by the Tau class glutathione transferases |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1042/BJ20090224 |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
Cytosolic GSTs (glutathione transferases) are a multifunctional group of enzymes widely distributed in Nature and involved in cellular detoxification processes. The three-dimensional structure of Gm GSTU4-4 (Glycine max GST Tau 4-4) complexed with GSH was determined by the molecular replacement method at 2.7 Å (1 Å = 0.1 mn) resolution. The bound GSH s located in a region formed by the beginning of α-helices H1, H2 and H3 in the N-terminal domain of the enzyme. Significant differences in the G-site (GSH-binding site) as compared with the structure determined in complex with Nb-GSH [S-(p-nitro-benzyl)-glutathione] were found. These differences were identified in the hydrogen-bonding and electrostatic interaction pattern and, consequently, GSH was found bound in two different conformations. In one subunit, the enzyme forms a complex with the ionized form of GSH, whereas in the other subunit it can form a complex with the non-ionized form. However, only the ionized form of GSH may form a productive and catalytically competent complex. Furthermore, a comparison of the GSH-bound structure with the Nb-GSH-bound structure shows a significant movement of the upper part of α-helix H4 and the C-terminal. This indicates an intrasubunit modulation between the G-site and the H-site (electrophile-binding site), suggesting that the enzyme recognizes the xenobiotic substrates by an induced-fit mechanism. The reorganization of Arg 111 and Tyr 107 upon xenobiotic substrate binding appears to govern the intrasubunit structural communication between the G- and H-site and the binding of GSH. The structural observations were further verified by steady-state kinetic analysis and site-directed mutagenesis studies. © The Authors Journal compilation. © 2009 Biochemical Society. |
en |
heal.journalName |
Biochemical Journal |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.volume |
422 |
en |
dc.identifier.doi |
10.1042/BJ20090224 |
en |
dc.identifier.spage |
247 |
en |
dc.identifier.epage |
256 |
en |