HEAL DSpace

Pyrolysis conditions and ozone oxidation effects on ammonia adsorption in biomass generated chars

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Kastner, JR en
dc.contributor.author Miller, J en
dc.contributor.author Das, KC en
dc.date.accessioned 2014-06-06T06:49:01Z
dc.date.available 2014-06-06T06:49:01Z
dc.date.issued 2009 en
dc.identifier.issn 03043894 en
dc.identifier.uri http://dx.doi.org/10.1016/j.jhazmat.2008.09.051 en
dc.identifier.uri http://62.217.125.90/xmlui/handle/123456789/4384
dc.subject Activated carbon en
dc.subject Ozone activation en
dc.subject Pyrolysis en
dc.subject Water vapor en
dc.subject.other Activation process en
dc.subject.other Adsorption capacities en
dc.subject.other Ammonia adsorptions en
dc.subject.other Biomass chars en
dc.subject.other Break through curves en
dc.subject.other Low energies en
dc.subject.other Low temperatures en
dc.subject.other Ozone oxidations en
dc.subject.other Ozone treatments en
dc.subject.other Palm oil en
dc.subject.other Palm oil shells en
dc.subject.other Palm shells en
dc.subject.other Peanut hulls en
dc.subject.other Poultry litters en
dc.subject.other Relative humidities en
dc.subject.other Room temperatures en
dc.subject.other Activated carbon treatment en
dc.subject.other Ammonia en
dc.subject.other Atmospheric humidity en
dc.subject.other Biological materials en
dc.subject.other Biomass en
dc.subject.other Charcoal en
dc.subject.other Chemical reactions en
dc.subject.other Fly ash en
dc.subject.other Gas adsorption en
dc.subject.other Moisture en
dc.subject.other Ozone en
dc.subject.other Photomasks en
dc.subject.other Pyrolysis en
dc.subject.other Thermal effects en
dc.subject.other Thermogravimetric analysis en
dc.subject.other Vegetable oils en
dc.subject.other Water vapor en
dc.subject.other Activated carbon en
dc.subject.other activated carbon en
dc.subject.other adsorption en
dc.subject.other ammonia en
dc.subject.other biomass en
dc.subject.other oxidation en
dc.subject.other ozone en
dc.subject.other pyrolysis en
dc.subject.other Adsorption en
dc.subject.other Ammonia en
dc.subject.other Biomass en
dc.subject.other Charcoal en
dc.subject.other Environmental Pollutants en
dc.subject.other Hot Temperature en
dc.subject.other Oxidation-Reduction en
dc.subject.other Ozone en
dc.subject.other Activated Carbon en
dc.subject.other Ammonia en
dc.subject.other Biomass en
dc.subject.other Charcoal en
dc.subject.other Chemical Reactions en
dc.subject.other Gravimetry en
dc.subject.other Humidity en
dc.subject.other Moisture en
dc.subject.other Ozone en
dc.subject.other Pyrolysis en
dc.subject.other Vapors en
dc.subject.other Vegetable Oil en
dc.subject.other Arachis hypogaea en
dc.title Pyrolysis conditions and ozone oxidation effects on ammonia adsorption in biomass generated chars en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.jhazmat.2008.09.051 en
heal.publicationDate 2009 en
heal.abstract Ammonia adsorbents were generated via pyrolysis of biomass (peanut hulls and palm oil shells) over a range of temperatures and compared to a commercially available activated carbon (AC) and solid biomass residuals (wood and poultry litter fly ash). Dynamic ammonia adsorption studies (i.e., breakthrough curves) were performed using these adsorbents at 23 °C from 6 to 17 ppmv NH3. Of the biomass chars, palm oil char generated at 500 °C had the highest NH3 adsorption capacity (0.70 mg/g, 6 ppmv, 10% relative humidity (RH)), was similar to the AC, and contrasted to the other adsorbents (including the AC), the NH3 adsorption capacity significantly increased if the relative humidity was increased (4 mg/g, 7 ppmv, 73% RH). Room temperature ozone treatment of the chars and activated carbon significantly increased the NH3 adsorption capacity (10% RH); resultant adsorption capacity, q (mg/g) increased by ∼2, 6, and 10 times for palm oil char, peanut hull char (pyrolysis only), and activated carbon, respectively. However, water vapor (73% RH at 23 °C) significantly reduced NH3 adsorption capacity in the steam and ozone treated biomass, yet had no effect on the palm shell char generated at 500 °C. These results indicate the feasibility of using a low temperature (and thus low energy input) pyrolysis and activation process for the generation of NH3 adsorbents from biomass residuals. © 2008 Elsevier B.V. All rights reserved. en
heal.journalName Journal of Hazardous Materials en
dc.identifier.issue 2-3 en
dc.identifier.volume 164 en
dc.identifier.doi 10.1016/j.jhazmat.2008.09.051 en
dc.identifier.spage 1420 en
dc.identifier.epage 1427 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναζήτηση DSpace


Σύνθετη Αναζήτηση

Αναζήτηση

Ο Λογαριασμός μου

Στατιστικές