dc.contributor.author |
Bhagwat, AA |
en |
dc.contributor.author |
Jun, W |
en |
dc.contributor.author |
Liu, L |
en |
dc.contributor.author |
Kannan, P |
en |
dc.contributor.author |
Dharne, M |
en |
dc.contributor.author |
Pheh, B |
en |
dc.contributor.author |
Tall, BD |
en |
dc.contributor.author |
Kothary, MH |
en |
dc.contributor.author |
Gross, KC |
en |
dc.contributor.author |
Angle, S |
en |
dc.contributor.author |
Meng, J |
en |
dc.contributor.author |
Smith, A |
en |
dc.date.accessioned |
2014-06-06T06:49:00Z |
|
dc.date.available |
2014-06-06T06:49:00Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
13500872 |
en |
dc.identifier.uri |
http://dx.doi.org/10.1099/mic.0.023747-0 |
en |
dc.identifier.uri |
http://62.217.125.90/xmlui/handle/123456789/4379 |
|
dc.subject.other |
bacterium lipopolysaccharide |
en |
dc.subject.other |
glucan |
en |
dc.subject.other |
glucose |
en |
dc.subject.other |
kanamycin |
en |
dc.subject.other |
osmoregulated periplasmic glucan |
en |
dc.subject.other |
unclassified drug |
en |
dc.subject.other |
glucan |
en |
dc.subject.other |
glucose |
en |
dc.subject.other |
animal cell |
en |
dc.subject.other |
animal experiment |
en |
dc.subject.other |
animal tissue |
en |
dc.subject.other |
antibiotic resistance |
en |
dc.subject.other |
article |
en |
dc.subject.other |
bacterial growth |
en |
dc.subject.other |
bacterial strain |
en |
dc.subject.other |
bacterial viability |
en |
dc.subject.other |
bacterial virulence |
en |
dc.subject.other |
carbohydrate analysis |
en |
dc.subject.other |
carbohydrate synthesis |
en |
dc.subject.other |
controlled study |
en |
dc.subject.other |
culture medium |
en |
dc.subject.other |
gene cassette |
en |
dc.subject.other |
gene insertion |
en |
dc.subject.other |
LD 50 |
en |
dc.subject.other |
male |
en |
dc.subject.other |
mouse |
en |
dc.subject.other |
mutational analysis |
en |
dc.subject.other |
nonhuman |
en |
dc.subject.other |
operon |
en |
dc.subject.other |
osmolarity |
en |
dc.subject.other |
osmoregulation |
en |
dc.subject.other |
priority journal |
en |
dc.subject.other |
Salmonella typhimurium |
en |
dc.subject.other |
strain difference |
en |
dc.subject.other |
animal |
en |
dc.subject.other |
animal salmonellosis |
en |
dc.subject.other |
Bagg albino mouse |
en |
dc.subject.other |
chemistry |
en |
dc.subject.other |
cytoplasm |
en |
dc.subject.other |
DNA microarray |
en |
dc.subject.other |
electrolyte balance |
en |
dc.subject.other |
gene expression regulation |
en |
dc.subject.other |
genetics |
en |
dc.subject.other |
human |
en |
dc.subject.other |
metabolism |
en |
dc.subject.other |
microbiology |
en |
dc.subject.other |
mutation |
en |
dc.subject.other |
pathogenicity |
en |
dc.subject.other |
phenotype |
en |
dc.subject.other |
physiology |
en |
dc.subject.other |
virulence |
en |
dc.subject.other |
Mus |
en |
dc.subject.other |
Salmonella enterica subsp. enterica serovar Typhimurium |
en |
dc.subject.other |
Animals |
en |
dc.subject.other |
Culture Media |
en |
dc.subject.other |
Gene Expression Regulation, Bacterial |
en |
dc.subject.other |
Glucans |
en |
dc.subject.other |
Glucose |
en |
dc.subject.other |
Humans |
en |
dc.subject.other |
Male |
en |
dc.subject.other |
Mice |
en |
dc.subject.other |
Mice, Inbred BALB C |
en |
dc.subject.other |
Mutation |
en |
dc.subject.other |
Oligonucleotide Array Sequence Analysis |
en |
dc.subject.other |
Periplasm |
en |
dc.subject.other |
Phenotype |
en |
dc.subject.other |
Salmonella Infections, Animal |
en |
dc.subject.other |
Salmonella typhimurium |
en |
dc.subject.other |
Virulence |
en |
dc.subject.other |
Water-Electrolyte Balance |
en |
dc.title |
Osmoregulated periplasmic glucans of Salmonella enterica serovar Typhimurium are required for optimal virulence in mice |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1099/mic.0.023747-0 |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
We purified osmoregulated periplasmic glucans (OPGs) from Salmonella enterica serovar Typhimurium and found them to be composed of 100% glucose with 2-linked glucose as the most abundant residue, with terminal glucose, 2,3-linked and 2,6-linked glucose also present in high quantities. The two structural genes for OPG biosynthesis, opgG and opgH, form a bicistronic operon, and insertion of a kanamycin resistance gene cassette into this operon resulted in a strain devoid of OPGs. The opgGH mutant strain was impaired in motility and growth under low osmolarity conditions. The opgGH mutation also resulted in a 2 log increase in the LD50 in mice compared to the wild-type strain SL1344. Inability to synthesize OPGs had no significant impact on the organism's lipopolysaccharide pattern or its ability to survive antimicrobial peptides-, detergent-, pH- and nutrient-stress conditions. We observed that the opgGH-defective strain respired at a reduced rate under acidic growth conditions (pH 5.0) and had lower ATP levels compared to the wild-type strain. These data indicate that OPGs of S. Typhimurium contribute towards mouse virulence as well as growth and motility under low osmolarity growth conditions. © 2009 SGM. |
en |
heal.journalName |
Microbiology |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.volume |
155 |
en |
dc.identifier.doi |
10.1099/mic.0.023747-0 |
en |
dc.identifier.spage |
229 |
en |
dc.identifier.epage |
237 |
en |