HEAL DSpace

Non-linear finite element analysis of cone penetration in layered sandy loam soil - Considering precompression stress state

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Tekeste, MZ en
dc.contributor.author Tollner, EW en
dc.contributor.author Raper, RL en
dc.contributor.author Way, TR en
dc.contributor.author Johnson, CE en
dc.date.accessioned 2014-06-06T06:49:00Z
dc.date.available 2014-06-06T06:49:00Z
dc.date.issued 2009 en
dc.identifier.issn 00224898 en
dc.identifier.uri http://dx.doi.org/10.1016/j.jterra.2009.05.005 en
dc.identifier.uri http://62.217.125.90/xmlui/handle/123456789/4376
dc.subject.other Auburn universities en
dc.subject.other Axisymmetric finite elements en
dc.subject.other Bulk density en
dc.subject.other Compaction models en
dc.subject.other Compaction treatment en
dc.subject.other Cone penetration en
dc.subject.other Cone penetration resistance en
dc.subject.other Drucker-Prager en
dc.subject.other Elastic parameters en
dc.subject.other FE formulation en
dc.subject.other FE model en
dc.subject.other Finite Element en
dc.subject.other Granular soils en
dc.subject.other Layered soils en
dc.subject.other Material hardening en
dc.subject.other Non-linear en
dc.subject.other Non-linear finite-element analysis en
dc.subject.other Poisson's ratio en
dc.subject.other Pre-compression en
dc.subject.other Rigid cones en
dc.subject.other Sandy loam soils en
dc.subject.other Soil chamber en
dc.subject.other Soil compaction en
dc.subject.other Soil dynamics en
dc.subject.other Soil layer en
dc.subject.other Soil moisture content en
dc.subject.other Strain behaviors en
dc.subject.other Stress state en
dc.subject.other Stress-strain relationships en
dc.subject.other Surface contact en
dc.subject.other Young's Modulus en
dc.subject.other ABAQUS en
dc.subject.other Compaction en
dc.subject.other Elasticity en
dc.subject.other Geologic models en
dc.subject.other Groundwater en
dc.subject.other Hardening en
dc.subject.other Moisture determination en
dc.subject.other Permittivity en
dc.subject.other Poisson ratio en
dc.subject.other Soil conditioners en
dc.subject.other Soil mechanics en
dc.subject.other Soil moisture en
dc.subject.other Stress-strain curves en
dc.subject.other Yield stress en
dc.subject.other Finite element method en
dc.title Non-linear finite element analysis of cone penetration in layered sandy loam soil - Considering precompression stress state en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.jterra.2009.05.005 en
heal.publicationDate 2009 en
heal.abstract Axisymmetric finite element (FE) method was developed to simulate cone penetration process in layered granular soil. The FE was modeled using ABAQUS/Explicit, a commercially available package. Soil was considered as a non-linear elastic plastic material which was modeled using variable elastic parameters of Young's Modulus and Poisson's ratio and Drucker-Prager criterion with yield stress dependent material hardening property. The material hardening parameters of the model were estimated from the USDA-ARS National Soil Dynamics Laboratory - Auburn University (NSDL-AU) soil compaction model. The stress-strain relationship in the NSDLAU compaction model was modified to account for the different soil moisture conditions and the influence of precompression stress states of the soil layers. A surface contact pair ('slave-master') algorithm in ABAQUS/Explicit was used to simulate the insertion of a rigid cone (RAX2 ABAQUS element) into deformable and layered soil medium (CAX4R ABAQUS element). The FE formulation was verified using cone penetration data collected on a soil chamber of Norfolk sandy loam soil which was prepared in two compaction treatments that varied in bulk density in the hardpan layer of (1) 1.64 Mg m-3 and (2) 1.71 Mg m-3. The FE model successfully simulated the trend of cone penetration in layered soils indicating the location of the sub-soil compacted (hardpan) layer and peak cone penetration resistance. Modification of the NSDL-AU model to account for the actual soil moisture content and inclusion of the influence of precompression stress into the strain behavior of the NSDL-AU model improved the performance of FE in predicting the peak cone penetration resistance. Modification of the NSDL-AU model resulted in an improvement of about 42% in the finite element-predicted soil cone penetration forces compared with the FE results that used the NSDL-AU 'virgin' model. © 2009 ISTVS. en
heal.journalName Journal of Terramechanics en
dc.identifier.issue 5 en
dc.identifier.volume 46 en
dc.identifier.doi 10.1016/j.jterra.2009.05.005 en
dc.identifier.spage 229 en
dc.identifier.epage 239 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναζήτηση DSpace


Σύνθετη Αναζήτηση

Αναζήτηση

Ο Λογαριασμός μου

Στατιστικές