dc.contributor.author |
Tekeste, MZ |
en |
dc.contributor.author |
Tollner, EW |
en |
dc.contributor.author |
Raper, RL |
en |
dc.contributor.author |
Way, TR |
en |
dc.contributor.author |
Johnson, CE |
en |
dc.date.accessioned |
2014-06-06T06:49:00Z |
|
dc.date.available |
2014-06-06T06:49:00Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
00224898 |
en |
dc.identifier.uri |
http://dx.doi.org/10.1016/j.jterra.2009.05.005 |
en |
dc.identifier.uri |
http://62.217.125.90/xmlui/handle/123456789/4376 |
|
dc.subject.other |
Auburn universities |
en |
dc.subject.other |
Axisymmetric finite elements |
en |
dc.subject.other |
Bulk density |
en |
dc.subject.other |
Compaction models |
en |
dc.subject.other |
Compaction treatment |
en |
dc.subject.other |
Cone penetration |
en |
dc.subject.other |
Cone penetration resistance |
en |
dc.subject.other |
Drucker-Prager |
en |
dc.subject.other |
Elastic parameters |
en |
dc.subject.other |
FE formulation |
en |
dc.subject.other |
FE model |
en |
dc.subject.other |
Finite Element |
en |
dc.subject.other |
Granular soils |
en |
dc.subject.other |
Layered soils |
en |
dc.subject.other |
Material hardening |
en |
dc.subject.other |
Non-linear |
en |
dc.subject.other |
Non-linear finite-element analysis |
en |
dc.subject.other |
Poisson's ratio |
en |
dc.subject.other |
Pre-compression |
en |
dc.subject.other |
Rigid cones |
en |
dc.subject.other |
Sandy loam soils |
en |
dc.subject.other |
Soil chamber |
en |
dc.subject.other |
Soil compaction |
en |
dc.subject.other |
Soil dynamics |
en |
dc.subject.other |
Soil layer |
en |
dc.subject.other |
Soil moisture content |
en |
dc.subject.other |
Strain behaviors |
en |
dc.subject.other |
Stress state |
en |
dc.subject.other |
Stress-strain relationships |
en |
dc.subject.other |
Surface contact |
en |
dc.subject.other |
Young's Modulus |
en |
dc.subject.other |
ABAQUS |
en |
dc.subject.other |
Compaction |
en |
dc.subject.other |
Elasticity |
en |
dc.subject.other |
Geologic models |
en |
dc.subject.other |
Groundwater |
en |
dc.subject.other |
Hardening |
en |
dc.subject.other |
Moisture determination |
en |
dc.subject.other |
Permittivity |
en |
dc.subject.other |
Poisson ratio |
en |
dc.subject.other |
Soil conditioners |
en |
dc.subject.other |
Soil mechanics |
en |
dc.subject.other |
Soil moisture |
en |
dc.subject.other |
Stress-strain curves |
en |
dc.subject.other |
Yield stress |
en |
dc.subject.other |
Finite element method |
en |
dc.title |
Non-linear finite element analysis of cone penetration in layered sandy loam soil - Considering precompression stress state |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.jterra.2009.05.005 |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
Axisymmetric finite element (FE) method was developed to simulate cone penetration process in layered granular soil. The FE was modeled using ABAQUS/Explicit, a commercially available package. Soil was considered as a non-linear elastic plastic material which was modeled using variable elastic parameters of Young's Modulus and Poisson's ratio and Drucker-Prager criterion with yield stress dependent material hardening property. The material hardening parameters of the model were estimated from the USDA-ARS National Soil Dynamics Laboratory - Auburn University (NSDL-AU) soil compaction model. The stress-strain relationship in the NSDLAU compaction model was modified to account for the different soil moisture conditions and the influence of precompression stress states of the soil layers. A surface contact pair ('slave-master') algorithm in ABAQUS/Explicit was used to simulate the insertion of a rigid cone (RAX2 ABAQUS element) into deformable and layered soil medium (CAX4R ABAQUS element). The FE formulation was verified using cone penetration data collected on a soil chamber of Norfolk sandy loam soil which was prepared in two compaction treatments that varied in bulk density in the hardpan layer of (1) 1.64 Mg m-3 and (2) 1.71 Mg m-3. The FE model successfully simulated the trend of cone penetration in layered soils indicating the location of the sub-soil compacted (hardpan) layer and peak cone penetration resistance. Modification of the NSDL-AU model to account for the actual soil moisture content and inclusion of the influence of precompression stress into the strain behavior of the NSDL-AU model improved the performance of FE in predicting the peak cone penetration resistance. Modification of the NSDL-AU model resulted in an improvement of about 42% in the finite element-predicted soil cone penetration forces compared with the FE results that used the NSDL-AU 'virgin' model. © 2009 ISTVS. |
en |
heal.journalName |
Journal of Terramechanics |
en |
dc.identifier.issue |
5 |
en |
dc.identifier.volume |
46 |
en |
dc.identifier.doi |
10.1016/j.jterra.2009.05.005 |
en |
dc.identifier.spage |
229 |
en |
dc.identifier.epage |
239 |
en |