dc.contributor.author |
Singh, K |
en |
dc.contributor.author |
Risse, M |
en |
dc.contributor.author |
Das, KC |
en |
dc.contributor.author |
Worley, J |
en |
dc.date.accessioned |
2014-06-06T06:48:56Z |
|
dc.date.available |
2014-06-06T06:48:56Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
01950738 |
en |
dc.identifier.uri |
http://dx.doi.org/10.1115/1.3120349 |
en |
dc.identifier.uri |
http://62.217.125.90/xmlui/handle/123456789/4341 |
|
dc.subject |
Bioenergy |
en |
dc.subject |
Biofuel |
en |
dc.subject |
Biomass |
en |
dc.subject |
Cellulose |
en |
dc.subject |
Composition |
en |
dc.subject |
Lignin |
en |
dc.subject |
TGA |
en |
dc.subject.other |
Advanced researches |
en |
dc.subject.other |
Bio oil |
en |
dc.subject.other |
Bioenergy |
en |
dc.subject.other |
Biomass cellulose |
en |
dc.subject.other |
Decomposition rate |
en |
dc.subject.other |
Fractional composition |
en |
dc.subject.other |
Linear correlation |
en |
dc.subject.other |
Mathematical procedures |
en |
dc.subject.other |
Pyrolysis products |
en |
dc.subject.other |
Rate of change |
en |
dc.subject.other |
System of linear equations |
en |
dc.subject.other |
Time-consuming process |
en |
dc.subject.other |
Unit weight |
en |
dc.subject.other |
Biofuels |
en |
dc.subject.other |
Biomass |
en |
dc.subject.other |
Cellulose |
en |
dc.subject.other |
Lignin |
en |
dc.subject.other |
Mixtures |
en |
dc.subject.other |
Thermography (temperature measurement) |
en |
dc.subject.other |
Thermogravimetric analysis |
en |
dc.subject.other |
Biomass |
en |
dc.subject.other |
Cellulose |
en |
dc.subject.other |
Chemical Composition |
en |
dc.subject.other |
Gravimetry |
en |
dc.subject.other |
Lignins |
en |
dc.subject.other |
Linear Programing |
en |
dc.subject.other |
Mixtures |
en |
dc.subject.other |
Thermal Analysis |
en |
dc.subject.other |
Thermography |
en |
dc.title |
Determination of composition of cellulose and lignin mixtures using thermogravimetric analysis |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1115/1.3120349 |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
The proportional composition of cellulose, hemicellulose, lignin, and minerals in a biomass plays a significant role in the proportion of pyrolysis products (bio-oil, char, and gases). Traditionally, the composition of biomass is chemically determined, which is a time consuming process. This paper presents the results of a preliminary investigation of a method using thermogravimetric analysis for predicting the fraction of cellulose and lignin in lignin-cellulose mixtures. The concept is based on a newly developed theory of pyrolytic unit thermographs (PUTs). The PUT is a thermograph showing rate of change in biomass weight with respect to temperature for a unit weight loss. These PUTs were used as input for two predictive mathematical procedures that minimize noise to predict the fractional composition in unknown lignin-cellulose mixtures. The first model used linear correlations between cellulose/lignin content and peak decomposition rate while the second method used a system of linear equations. Results showed that both models predicted the composition of lignin-cellulose mixture within 7-18% of measured value. The promising results of this preliminary study will certainly motivate further refinement of this method through advanced research. Copyright © 2009 by ASME. |
en |
heal.journalName |
Journal of Energy Resources Technology, Transactions of the ASME |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.volume |
131 |
en |
dc.identifier.doi |
10.1115/1.3120349 |
en |
dc.identifier.spage |
0222011 |
en |
dc.identifier.epage |
0222016 |
en |