HEAL DSpace

Artificial neural networks for automated year-round temperature prediction

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Smith, BA en
dc.contributor.author Hoogenboom, G en
dc.contributor.author McClendon, RW en
dc.date.accessioned 2014-06-06T06:48:55Z
dc.date.available 2014-06-06T06:48:55Z
dc.date.issued 2009 en
dc.identifier.issn 01681699 en
dc.identifier.uri http://dx.doi.org/10.1016/j.compag.2009.04.003 en
dc.identifier.uri http://62.217.125.90/xmlui/handle/123456789/4331
dc.subject Artificial intelligence en
dc.subject Frost protection en
dc.subject Fruit crops en
dc.subject Neural network en
dc.subject Temperature prediction en
dc.subject Vegetable crops en
dc.subject.other Air temperature en
dc.subject.other Artificial Neural Network en
dc.subject.other Artificial neural networks en
dc.subject.other Cloud cover en
dc.subject.other Decision support tools en
dc.subject.other Ensemble techniques en
dc.subject.other Environmental Monitoring en
dc.subject.other Extreme temperatures en
dc.subject.other Fruit crops en
dc.subject.other Georgia en
dc.subject.other Graphical analysis en
dc.subject.other Mean absolute error en
dc.subject.other Near real-time datum en
dc.subject.other Potential loss en
dc.subject.other Prediction accuracy en
dc.subject.other Prediction errors en
dc.subject.other Prediction horizon en
dc.subject.other Temperature prediction en
dc.subject.other Vegetable crops en
dc.subject.other Weather data en
dc.subject.other Winter months en
dc.subject.other Atmospheric temperature en
dc.subject.other Backpropagation en
dc.subject.other Crops en
dc.subject.other Decision support systems en
dc.subject.other Forecasting en
dc.subject.other Frost protection en
dc.subject.other Fruits en
dc.subject.other Neural networks en
dc.subject.other accuracy assessment en
dc.subject.other agricultural technology en
dc.subject.other air temperature en
dc.subject.other artificial intelligence en
dc.subject.other artificial neural network en
dc.subject.other cloud cover en
dc.subject.other decision support system en
dc.subject.other environmental monitoring en
dc.subject.other frost en
dc.subject.other fruit en
dc.subject.other graphical method en
dc.subject.other horticulture en
dc.subject.other real time en
dc.subject.other North America en
dc.subject.other United States en
dc.title Artificial neural networks for automated year-round temperature prediction en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.compag.2009.04.003 en
heal.publicationDate 2009 en
heal.abstract Crops and livestock in most of the southeastern United States are susceptible to potential losses due to extreme cold and heat. However, given suitable warning, agricultural and horticultural producers can mitigate the damage of extreme temperature events. To provide such a warning, air temperature prediction models are needed at horizons ranging from 1 to 12 h. The goal of this project was to explore the application of artificial neural networks (ANNs) for the prediction of air temperature during the entire year based on near real-time data. Ward-style ANNs were developed using detailed weather data collected by the Georgia Automated Environmental Monitoring Network (AEMN). The ANNs were able to provide predictions throughout the year, with a mean absolute error (MAE) of the year-round models that was less during the winter months than the MAE of the models resulting from the application of previously developed winter-specific models. The prediction MAE for a year-round evaluation set ranged from 0.516 °C at the one-hour horizon to 1.873 °C at the twelve-hour horizon. A detailed graphical analysis of MAE by time-of-year and time-of-day was also performed. A tendency to over-predict temperatures during summer afternoons was associated with localized cloud cover during that period. The inclusion of rainfall as input to the model was also shown to improve prediction accuracy. In addition, two simple ensemble techniques were explored and neither parallel nor series aggregation was found to reduce prediction errors. When simulated over two extreme temperature events, the models were capable of rapidly adjusting predictions on the basis of new information. The final models were applied to prediction horizons of 1-12 h and deployed on the website of the Georgia AEMN (www.GeorgiaWeather.net) for use as a general, year-round decision support tool. © 2009 Elsevier B.V. All rights reserved. en
heal.journalName Computers and Electronics in Agriculture en
dc.identifier.issue 1 en
dc.identifier.volume 68 en
dc.identifier.doi 10.1016/j.compag.2009.04.003 en
dc.identifier.spage 52 en
dc.identifier.epage 61 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναζήτηση DSpace


Σύνθετη Αναζήτηση

Αναζήτηση

Ο Λογαριασμός μου

Στατιστικές