HEAL DSpace

Table olives volatile fingerprints: Potential of an electronic nose for quality discrimination

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Panagou, EZ en
dc.contributor.author Sahgal, N en
dc.contributor.author Magan, N en
dc.contributor.author Nychas, G-JE en
dc.date.accessioned 2014-06-06T06:48:43Z
dc.date.available 2014-06-06T06:48:43Z
dc.date.issued 2008 en
dc.identifier.issn 09254005 en
dc.identifier.uri http://dx.doi.org/10.1016/j.snb.2008.06.038 en
dc.identifier.uri http://62.217.125.90/xmlui/handle/123456789/4246
dc.subject Electronic nose en
dc.subject Neural networks en
dc.subject Quality en
dc.subject Sensors en
dc.subject Table olives en
dc.subject Volatile fingerprints en
dc.subject.other Arsenic compounds en
dc.subject.other Artificial intelligence en
dc.subject.other Artificial organs en
dc.subject.other Chemical compounds en
dc.subject.other Chemical sensors en
dc.subject.other Classification (of information) en
dc.subject.other Computer networks en
dc.subject.other Differentiation (calculus) en
dc.subject.other Metal ions en
dc.subject.other Metallic compounds en
dc.subject.other Population statistics en
dc.subject.other Sensor arrays en
dc.subject.other Sensors en
dc.subject.other Statistical methods en
dc.subject.other Statistical tests en
dc.subject.other Vegetation en
dc.subject.other Volatile organic compounds en
dc.subject.other Electronic nose en
dc.subject.other Green olives en
dc.subject.other Quality en
dc.subject.other Table olives en
dc.subject.other Volatile fingerprints en
dc.subject.other Neural networks en
dc.title Table olives volatile fingerprints: Potential of an electronic nose for quality discrimination en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.snb.2008.06.038 en
heal.publicationDate 2008 en
heal.abstract In the present work, the potential of an electronic nose to differentiate the quality of fermented green table olives based on their volatile profile was investigated. An electronic gas sensor array system comprising a hybrid sensor array of 12 metal oxide and 10 metal ion-based sensors was used to generate a chemical fingerprint (pattern) of the volatile compounds present in olives. Multivariate statistical analysis and artificial neural networks were applied to the generated patterns to achieve various classification tasks. Green olives were initially classified into three major classes (acceptable, unacceptable, marginal) based on a sensory panel. Multivariate statistical approach showed good discrimination between the class of unacceptable samples and the classes of acceptable and marginal samples. However, in the latter two classes there was a certain area of overlapping in which no clear differentiation could be made. The potential to discriminate green olives in the three selected classes was also evaluated using a multilayer perceptron (MLP) neural network as a classifier with an 18-15-8-3 structure. Results showed good performance of the developed network as only two samples were misclassified in a 66-sample training dataset population, whereas only one case was misclassified in a 12-sample test dataset population. The results of this study provide promising perspectives for the use of a low-cost and rapid system for quality differentiation of fermented green olives based on their volatile profile. © 2008 Elsevier B.V. All rights reserved. en
heal.journalName Sensors and Actuators, B: Chemical en
dc.identifier.issue 2 en
dc.identifier.volume 134 en
dc.identifier.doi 10.1016/j.snb.2008.06.038 en
dc.identifier.spage 902 en
dc.identifier.epage 907 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναζήτηση DSpace


Σύνθετη Αναζήτηση

Αναζήτηση

Ο Λογαριασμός μου

Στατιστικές