dc.contributor.author |
Platis, D |
en |
dc.contributor.author |
Labrou, NE |
en |
dc.date.accessioned |
2014-06-06T06:48:22Z |
|
dc.date.available |
2014-06-06T06:48:22Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
09298673 |
en |
dc.identifier.uri |
http://dx.doi.org/10.2174/092986708785132924 |
en |
dc.identifier.uri |
http://62.217.125.90/xmlui/handle/123456789/4115 |
|
dc.subject |
Chemoselective ligation |
en |
dc.subject |
Directed evolution |
en |
dc.subject |
Expressed protein ligation |
en |
dc.subject |
Native ligation |
en |
dc.subject |
PEG |
en |
dc.subject |
PEGylation |
en |
dc.subject |
Protein and enzyme engineering |
en |
dc.subject |
Rational protein design |
en |
dc.subject |
Semisynthetic proteins |
en |
dc.subject.other |
aciclovir |
en |
dc.subject.other |
activated protein C |
en |
dc.subject.other |
alpha conotoxin MII |
en |
dc.subject.other |
alpha interferon |
en |
dc.subject.other |
alpha interferon receptor |
en |
dc.subject.other |
amino acid |
en |
dc.subject.other |
asparaginase |
en |
dc.subject.other |
DNA vaccine |
en |
dc.subject.other |
Fc receptor |
en |
dc.subject.other |
ganciclovir |
en |
dc.subject.other |
macrogol |
en |
dc.subject.other |
monoclonal antibody 2F5 |
en |
dc.subject.other |
novel erythropoiesis stimulating protein |
en |
dc.subject.other |
peginterferon alpha2a |
en |
dc.subject.other |
peginterferon alpha2b |
en |
dc.subject.other |
polyaspartic acid |
en |
dc.subject.other |
polylysine |
en |
dc.subject.other |
polyvinyl alcohol |
en |
dc.subject.other |
recombinant blood clotting factor 7a |
en |
dc.subject.other |
recombinant DNA |
en |
dc.subject.other |
recombinant erythropoietin |
en |
dc.subject.other |
recombinant granulocyte colony stimulating factor |
en |
dc.subject.other |
recombinant human insulin |
en |
dc.subject.other |
streptokinase |
en |
dc.subject.other |
T lymphocyte antibody |
en |
dc.subject.other |
thymidine |
en |
dc.subject.other |
trastuzumab |
en |
dc.subject.other |
unindexed drug |
en |
dc.subject.other |
urate oxidase |
en |
dc.subject.other |
zidovudine |
en |
dc.subject.other |
ligand |
en |
dc.subject.other |
polymer |
en |
dc.subject.other |
protein |
en |
dc.subject.other |
acute lymphoblastic leukemia |
en |
dc.subject.other |
antigenicity |
en |
dc.subject.other |
antineoplastic activity |
en |
dc.subject.other |
antiviral activity |
en |
dc.subject.other |
chemical engineering |
en |
dc.subject.other |
chemical modification |
en |
dc.subject.other |
DNA synthesis inhibition |
en |
dc.subject.other |
drug bioavailability |
en |
dc.subject.other |
drug delivery system |
en |
dc.subject.other |
drug design |
en |
dc.subject.other |
drug efficacy |
en |
dc.subject.other |
drug half life |
en |
dc.subject.other |
drug potency |
en |
dc.subject.other |
drug receptor binding |
en |
dc.subject.other |
drug research |
en |
dc.subject.other |
drug structure |
en |
dc.subject.other |
enzyme engineering |
en |
dc.subject.other |
gene technology |
en |
dc.subject.other |
genetic engineering |
en |
dc.subject.other |
genetic variability |
en |
dc.subject.other |
genomics |
en |
dc.subject.other |
human |
en |
dc.subject.other |
immunogenicity |
en |
dc.subject.other |
nonhuman |
en |
dc.subject.other |
protein engineering |
en |
dc.subject.other |
protein glycosylation |
en |
dc.subject.other |
protein purification |
en |
dc.subject.other |
proteomics |
en |
dc.subject.other |
review |
en |
dc.subject.other |
site directed mutagenesis |
en |
dc.subject.other |
structure analysis |
en |
dc.subject.other |
virus infection |
en |
dc.subject.other |
chemical structure |
en |
dc.subject.other |
chemistry |
en |
dc.subject.other |
directed molecular evolution |
en |
dc.subject.other |
genetics |
en |
dc.subject.other |
molecular library |
en |
dc.subject.other |
protein conformation |
en |
dc.subject.other |
synthesis |
en |
dc.subject.other |
Amino Acids |
en |
dc.subject.other |
Directed Molecular Evolution |
en |
dc.subject.other |
Drug Design |
en |
dc.subject.other |
Genetic Engineering |
en |
dc.subject.other |
Humans |
en |
dc.subject.other |
Ligands |
en |
dc.subject.other |
Models, Molecular |
en |
dc.subject.other |
Molecular Structure |
en |
dc.subject.other |
Polymers |
en |
dc.subject.other |
Protein Conformation |
en |
dc.subject.other |
Proteins |
en |
dc.subject.other |
Small Molecule Libraries |
en |
dc.title |
Chemical and genetic engineering strategies to improve the potency of pharmaceutical proteins and enzymes |
en |
heal.type |
other |
en |
heal.identifier.primary |
10.2174/092986708785132924 |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
Over the last decade there has been significant progress in understanding the molecular basis of disease processes. At the same time the technological advances in the area of genomics and the efforts in proteomics research have increased the possibility of discovering many proteins with defined therapeutic functions. A large number of these proteins have found clinical application. Despite the importance of proteins as therapeutic agents, they have a number of disadvantages in comparison to small-molecule drugs, including immunogenicity and antigenicity, poor efficacy and oral bioavailability as well as, in many cases, short serum half-lives. To date, the most promising approaches for improving protein therapeutics rely on the use of genetic engineering and site-specific chemical synthesis/modification techniques. Improving the potency of protein drugs by employing modern recombinant DNA technologies and novel chemical synthesis techniques is of primary importance, not only because of the enormous medicinal benefit but also because of the significant economic edge an improved drug can provide in today's competitive market. ©2008 Bentham Science Publishers Ltd. |
en |
heal.journalName |
Current Medicinal Chemistry |
en |
dc.identifier.issue |
19 |
en |
dc.identifier.volume |
15 |
en |
dc.identifier.doi |
10.2174/092986708785132924 |
en |
dc.identifier.spage |
1940 |
en |
dc.identifier.epage |
1955 |
en |