dc.contributor.author |
Morou, E |
en |
dc.contributor.author |
Ismail, HM |
en |
dc.contributor.author |
Dowd, AJ |
en |
dc.contributor.author |
Hemingway, J |
en |
dc.contributor.author |
Labrou, N |
en |
dc.contributor.author |
Paine, M |
en |
dc.contributor.author |
Vontas, J |
en |
dc.date.accessioned |
2014-06-06T06:48:20Z |
|
dc.date.available |
2014-06-06T06:48:20Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
00032697 |
en |
dc.identifier.uri |
http://dx.doi.org/10.1016/j.ab.2008.03.046 |
en |
dc.identifier.uri |
http://62.217.125.90/xmlui/handle/123456789/4091 |
|
dc.subject |
Biosensor |
en |
dc.subject |
HPLC |
en |
dc.subject |
Insecticide |
en |
dc.subject |
Malaria |
en |
dc.subject |
Potentiometer |
en |
dc.subject |
Vector control |
en |
dc.subject.other |
chlorphenotane |
en |
dc.subject.other |
dehydrochlorinase |
en |
dc.subject.other |
enzyme |
en |
dc.subject.other |
glutathione transferase |
en |
dc.subject.other |
insecticide |
en |
dc.subject.other |
Aedes aegypti |
en |
dc.subject.other |
article |
en |
dc.subject.other |
biosensor |
en |
dc.subject.other |
chemical reaction |
en |
dc.subject.other |
colorimetry |
en |
dc.subject.other |
dehydrochlorination reaction |
en |
dc.subject.other |
enzyme activity |
en |
dc.subject.other |
enzyme assay |
en |
dc.subject.other |
enzyme purification |
en |
dc.subject.other |
high performance liquid chromatography |
en |
dc.subject.other |
nucleotide sequence |
en |
dc.subject.other |
parasite vector |
en |
dc.subject.other |
pesticide spraying |
en |
dc.subject.other |
pH measurement |
en |
dc.subject.other |
priority journal |
en |
dc.subject.other |
protein analysis |
en |
dc.subject.other |
spectrophotometry |
en |
dc.subject.other |
validation process |
en |
dc.subject.other |
vector control |
en |
dc.subject.other |
DDT |
en |
dc.subject.other |
Hydrogen-Ion Concentration |
en |
dc.subject.other |
Lyases |
en |
dc.subject.other |
Potentiometry |
en |
dc.subject.other |
Sensitivity and Specificity |
en |
dc.subject.other |
Substrate Specificity |
en |
dc.subject.other |
Surface Properties |
en |
dc.subject.other |
Aedes aegypti |
en |
dc.title |
A dehydrochlorinase-based pH change assay for determination of DDT in sprayed surfaces |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.ab.2008.03.046 |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
A glutathione S-transferase (GST) from the mosquito Aedes aegypti (aagste2), selected in the field as a major metabolic resistance enzyme for this parasite vector, was employed to produce a highly specific assay for the determination of DDT [1,1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene]. Detection is based on the pH change occurring in an appropriate buffer system by the concomitant release of H+ during the aagste2-catalyzed dehydrochlorination reaction and is monitored potentiometrically or colorimetrically in the presence of a pH marker. The theoretical limit of detection (LOD) of the assay is 3.8 μg/ml, and the linear range of quantification is 12 to 250 μg/ml. The method does not recognize biologically inactive DDT analogues or major DDT photodegradants and breakdown molecules, and it is highly specific for the insecticidal p.p'DDT [1,1,1-trichloro-2,2-bis(p-chlorophenyl) ethane]. The biosensor was validated with a number of insecticide swabs from DDT-sprayed surfaces and found to be reproducible and reliable as compared with high-performance liquid chromatography (HPLC) (correlation coefficient R2 = 0.98). Given the current expansion of DDT residual sprayings in many regions of Africa as a key strategic intervention for malaria vector control, this simple assay to monitor DDT levels for vector control spraying programs could have an important impact on malaria control. © 2008 Elsevier Inc. All rights reserved. |
en |
heal.journalName |
Analytical Biochemistry |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.volume |
378 |
en |
dc.identifier.doi |
10.1016/j.ab.2008.03.046 |
en |
dc.identifier.spage |
60 |
en |
dc.identifier.epage |
64 |
en |