dc.contributor.author | Zhu, Y | en |
dc.contributor.author | Eiteman, MA | en |
dc.contributor.author | Altman, R | en |
dc.contributor.author | Altman, E | en |
dc.date.accessioned | 2014-06-06T06:48:08Z | |
dc.date.available | 2014-06-06T06:48:08Z | |
dc.date.issued | 2008 | en |
dc.identifier.issn | 00992240 | en |
dc.identifier.uri | http://dx.doi.org/10.1128/AEM.01610-08 | en |
dc.identifier.uri | http://62.217.125.90/xmlui/handle/123456789/3979 | |
dc.subject.other | Batch data processing | en |
dc.subject.other | Enzymes | en |
dc.subject.other | Escherichia coli | en |
dc.subject.other | Glucose | en |
dc.subject.other | Phosphorus | en |
dc.subject.other | Exponential feeding | en |
dc.subject.other | Fed-batch | en |
dc.subject.other | Formation rates | en |
dc.subject.other | Glycolytic fluxes | en |
dc.subject.other | Glycolytic rates | en |
dc.subject.other | Lactate dehydrogenases | en |
dc.subject.other | NADH oxidases | en |
dc.subject.other | Nutrient limitations | en |
dc.subject.other | Osmoprotectant | en |
dc.subject.other | Phosphoenolpyruvate | en |
dc.subject.other | Pyruvate | en |
dc.subject.other | Pyruvate dehydrogenase complexes | en |
dc.subject.other | Pyruvate formate lyase | en |
dc.subject.other | Pyruvate oxidases | en |
dc.subject.other | Pyruvate productions | en |
dc.subject.other | Synthase | en |
dc.subject.other | Chemostats | en |
dc.subject.other | acetic acid | en |
dc.subject.other | formate acetyltransferase | en |
dc.subject.other | glucose | en |
dc.subject.other | lactate dehydrogenase | en |
dc.subject.other | lyase | en |
dc.subject.other | nitrogen | en |
dc.subject.other | phosphorus | en |
dc.subject.other | pyruvate dehydrogenase | en |
dc.subject.other | pyruvate oxidase | en |
dc.subject.other | pyruvate water dikinase | en |
dc.subject.other | pyruvic acid | en |
dc.subject.other | reduced nicotinamide adenine dinucleotide dehydrogenase | en |
dc.subject.other | synthetase | en |
dc.subject.other | unclassified drug | en |
dc.subject.other | bioengineering | en |
dc.subject.other | chemostat | en |
dc.subject.other | coliform bacterium | en |
dc.subject.other | enzyme activity | en |
dc.subject.other | metabolism | en |
dc.subject.other | mutation | en |
dc.subject.other | organic acid | en |
dc.subject.other | article | en |
dc.subject.other | chemostat | en |
dc.subject.other | controlled study | en |
dc.subject.other | enzyme activity | en |
dc.subject.other | enzyme mechanism | en |
dc.subject.other | Escherichia coli | en |
dc.subject.other | fed batch culture | en |
dc.subject.other | gene mutation | en |
dc.subject.other | glycolysis | en |
dc.subject.other | nonhuman | en |
dc.subject.other | protein expression | en |
dc.subject.other | Acetic Acid | en |
dc.subject.other | Enzymes | en |
dc.subject.other | Escherichia coli | en |
dc.subject.other | Escherichia coli Proteins | en |
dc.subject.other | Glucose | en |
dc.subject.other | Glycolysis | en |
dc.subject.other | Metabolic Networks and Pathways | en |
dc.subject.other | Models, Biological | en |
dc.subject.other | Mutation | en |
dc.subject.other | Nitrogen | en |
dc.subject.other | Phosphorus | en |
dc.subject.other | Pyruvic Acid | en |
dc.subject.other | Arca | en |
dc.subject.other | Escherichia coli | en |
dc.title | High glycolytic flux improves pyruvate production by a metabolically engineered Escherichia coli strain | en |
heal.type | journalArticle | en |
heal.identifier.primary | 10.1128/AEM.01610-08 | en |
heal.publicationDate | 2008 | en |
heal.abstract | We report pyruvate formation in Escherichia coli strain ALS929 containing mutations in the aceEF, pfl, poxB, pps, and ldhA genes which encode, respectively, the pyruvate dehydrogenase complex, pyruvate formate lyase, pyruvate oxidase, phosphoenolpyruvate synthase, and lactate dehydrogenase. The glycolytic rate and pyruvate productivity were compared using glucose-, acetate-, nitrogen-, or phosphorus-limited chemostats at a growth rate of 0.15 h-1. Of these four nutrient limitation conditions, growth under acetate limitation resulted in the highest glycolytic flux (1.60 g/g · h), pyruvate formation rate (1.11 g/g · h), and pyruvate yield (0.70 g/g). Additional mutations in atpFH and arcA (strain ALS1059) further elevated the steady-state glycolytic flux to 2.38 g/g · h in an acetate-limited chemostat, with heterologous NADH oxidase expression causing only modest additional improvement. A fed-batch process with strain ALS1059 using defined medium with 5 mM betaine as osmoprotectant and an exponential feeding rate of 0.15 h-1 achieved 90 g/liter pyruvate, with an overall productivity of 2.1 g/liter · h and yield of 0.68 g/g. Copyright © 2008, American Society for Microbiology. All Rights Reserved. | en |
heal.journalName | Applied and Environmental Microbiology | en |
dc.identifier.issue | 21 | en |
dc.identifier.volume | 74 | en |
dc.identifier.doi | 10.1128/AEM.01610-08 | en |
dc.identifier.spage | 6649 | en |
dc.identifier.epage | 6655 | en |
Αρχεία | Μέγεθος | Μορφότυπο | Προβολή |
---|---|---|---|
Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο. |