HEAL DSpace

Automated planning and optimization of lumber production using machine vision and computed tomography

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Bhandarkar, SM en
dc.contributor.author Luo, X en
dc.contributor.author Daniels, RF en
dc.contributor.author William Tollner, E en
dc.date.accessioned 2014-06-06T06:48:04Z
dc.date.available 2014-06-06T06:48:04Z
dc.date.issued 2008 en
dc.identifier.issn 15455955 en
dc.identifier.uri http://dx.doi.org/10.1109/TASE.2008.925254 en
dc.identifier.uri http://62.217.125.90/xmlui/handle/123456789/3947
dc.subject Automated lumber grading en
dc.subject Automated lumber production en
dc.subject Computed tomography (CT) en
dc.subject Lumber production optimization en
dc.subject Nondestructive evaluation en
dc.subject.other Computer vision en
dc.subject.other Computerized tomography en
dc.subject.other Control theory en
dc.subject.other Diagnostic radiography en
dc.subject.other Electric instrument transformers en
dc.subject.other Hardwoods en
dc.subject.other Medical imaging en
dc.subject.other Optimization en
dc.subject.other Restoration en
dc.subject.other Sawing en
dc.subject.other Three dimensional en
dc.subject.other Tomography en
dc.subject.other Automated lumber grading en
dc.subject.other Automated lumber production en
dc.subject.other Computed tomography (CT) en
dc.subject.other Lumber production optimization en
dc.subject.other Nondestructive evaluation en
dc.subject.other Lumber en
dc.title Automated planning and optimization of lumber production using machine vision and computed tomography en
heal.type journalArticle en
heal.identifier.primary 10.1109/TASE.2008.925254 en
heal.identifier.secondary 4536060 en
heal.publicationDate 2008 en
heal.abstract An automated system for planning and optimization of lumber production using Machine Vision and Computed Tomography (CT) is proposed. Cross-sectional CT images of hardwood logs are analyzed using machine vision algorithms. Internal defects in the hardwood logs pockets are identified and localized. A virtual in silico 3-D reconstruction of the hardwood log and its internal defects is generated using Kalman filter-based tracking algorithms. Various sawing operations are simulated on the virtual 3-D reconstruction of the log and the resulting virtual lumber products automatically graded using rules stipulated by the National Hardwood Lumber Association (NHLA). Knowledge of the internal log defects is suitably exploited to formulate sawing strategies that optimize the value yield recovery of the resulting lumber products. A prototype implementation shows significant gains in value yield recovery when compared with lumber processing strategies that use only the information derived from the external log structure. © 2008 IEEE. en
heal.journalName IEEE Transactions on Automation Science and Engineering en
dc.identifier.issue 4 en
dc.identifier.volume 5 en
dc.identifier.doi 10.1109/TASE.2008.925254 en
dc.identifier.spage 677 en
dc.identifier.epage 695 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναζήτηση DSpace


Σύνθετη Αναζήτηση

Αναζήτηση

Ο Λογαριασμός μου

Στατιστικές